K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
3 tháng 4 2017
d= d* 1
= d* (af- be)
= daf- dbe
= daf- bcf+ bcf- dbe
= f (ad- bc)+b (cf- de)
Do \(\frac{a}{b}\) >\(\frac{c}{d}\) >\(\frac{e}{f}\)nên ad- bc >=af- be=1, cf- de>=1
=> f(ad- be)+ b(cf- de) >= f + b
<=> d >= b+f (đpcm)
11 tháng 3 2020
Đề sai rồi thì phải ak
\(\left(a+c-2b\right)^{2020}+\left|2bd-cd-cb\right|^{2019}=0\) nhé !
\(\Leftrightarrow a+c-2b=0;2bd-cd-cb=0\)
\(\Leftrightarrow a+c=2b;2bd-cd-cb=0\)
\(\Leftrightarrow\left(a+c\right)d-cd-cb=0\)
\(\Leftrightarrow ad=cb\)
\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\) ( đpcm )
\(\frac{bf-ce}{a}=\frac{cd-àf}{b}=\frac{ae-bd}{c}=\frac{abf-ace}{a^2}=\frac{bcd-abf}{b^2}=\frac{ace-bcd}{c^2}\)
\(=\frac{abf-ace+bcd-abf+ace-bcd}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0\)
\(\Rightarrow\frac{bf-ce}{a}=\frac{cd-af}{b}=\frac{ae-bd}{c}=0\)
\(\Rightarrow bf-ce=0\Rightarrow bf=ce\Rightarrow\frac{b}{e}=\frac{c}{f}\left(1\right)\)
\(cd-af=0\Rightarrow cd=af\Rightarrow\frac{c}{f}=\frac{a}{d}\left(2\right)\)
\(ae-bd=0\Rightarrow ae=bd\Rightarrow\frac{a}{d}=\frac{b}{e}\left(3\right)\)
từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\frac{a}{d}=\frac{b}{e}=\frac{c}{f}\)