Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}\Rightarrow\frac{a^4}{b^4}=\frac{b^4}{c^4}=\frac{c^4}{d^4}=\frac{d^4}{e^4}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}.\frac{d}{e}\)
\(\Rightarrow\frac{2a^4}{2b^4}=\frac{3b^4}{3c^4}=\frac{4c^4}{4d^4}=\frac{5d^4}{5e^4}=\frac{a}{e}\) (1)
Ta lại có : \(\frac{2a^4}{2b^4}=\frac{3b^4}{3c^4}=\frac{4c^4}{4d^4}=\frac{5d^4}{5e^4}=\frac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\) (TC DTSBN) (2)
Từ (1) ; (2) \(\Rightarrow\frac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}=\frac{a}{e}\) (đpcm)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\frac{a+b+c+d}{b+c+d+e}\)
Đặt \(k=\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\frac{a+b+c+d}{b+c+d+e}\)
\(\Rightarrow k^4=\left(\frac{a+b+c+d}{b+c+d+e}\right)^4=\frac{abcd}{bcde}=\frac{a}{e}\)
\(\Rightarrow\left(\frac{a+b+c+d}{b+c+d+e}\right)^4=\frac{a}{e}\)(đpcm)
Xin được phép sửa đề =) Đề ban đầu sai òi!
a) Chứng minh rằng \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\). Theo t/c dãy tỉ số bằng nhau,ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(1). Mặt khác,áp dụng dãy tỉ số bằng nhau lần nữa,ta cũng có:
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\) (2).Từ (1) và (2) ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}^{\left(đpcm\right)}\)
b) Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a^4}{c^4}=\frac{b^4}{d^4}=\left(\frac{a+b}{c+d}\right)^4=\left(\frac{a-b}{c-d}\right)^4\)(1). Mặt khác,theo tính chất dãy tỉ số bằng nhau ta cũng có:
\(\frac{a^4}{c^4}=\frac{b^4}{d^4}=\frac{a^4+b^4}{c^4+d^4}\) (2). Từ (1) và (2) ta có: \(\left(\frac{a-b}{c-d}\right)^4=\frac{a^4+b^4}{c^4+d^4}^{\left(đpcm\right)}\)
Đang rỗi,ngồi giải lại bài này theo cách khác cho vui
Giải
a) CMR: \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)
Ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{k^2b^2+b^2}{k^2d^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\) (1)
Lại có: \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(kb+b\right)^2}{\left(kd+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2}{d^2}\) (2)
Từ (1) và (2) ta có: \(\frac{a^2+b^2}{a^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}^{\left(đpcm\right)}\)
b)Tương tự như a)
a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Thay a = bk, c = dk vào \(\frac{a^2+b^2}{c^2+d^2}\) và \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\), ta có:
\(\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)
\(\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\)
Vì \(\frac{b^2}{d^2}=\frac{b^2}{d^2}\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Vậy \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\) với \(\frac{a}{b}=\frac{c}{d}\)
b) Thay a = bk, c = dk vào \(\left(\frac{a-b}{c-d}\right)^4\)và \(\frac{a^4+b^4}{c^4+d^4}\), ta có:
\(\left(\frac{bk-b}{dk-d}\right)^4=\frac{\left(bk-b\right)^4}{\left(dk-d\right)^4}=\frac{\left[b\left(k-1\right)\right]^4}{\left[d\left(k-1\right)\right]^4}=\frac{b^4\left(k-1\right)^4}{d^4\left(k-1\right)^4}=\frac{b^4}{d^4}\)
\(\frac{\left(bk\right)^4+b^4}{\left(dk\right)^4+d^4}=\frac{b^4k^4+b^4}{d^4k^4+d^4}=\frac{b^4\left(k^4+1\right)}{d^4\left(k^4+1\right)}=\frac{b^4}{d^4}\)
Vì \(\frac{b^4}{d^4}=\frac{b^4}{d^4}\Rightarrow\left(\frac{a-b}{c-d}\right)^4=\frac{a^4+b^4}{c^4+d^4}\)
Vậy \(\left(\frac{a-b}{c-d}\right)^4=\frac{a^4+b^4}{c^4+d^4}\) với \(\frac{a}{b}=\frac{c}{d}\)
b, Có: a/b < c/d => ad < bc
Xét a.(b+d)-b.(a+c) = ab+ad-ba-bc = ad-bc < 0
=> a.(b+d) < b.(a+c)
=> a/b < a+c/b+d
c, Đề phải là cho a+b+c = 2016 chứ bạn
Có : A = a/a+b+c-c + b/a+b+c-a + c/a+b+c-b = a/a+b + b/b+c + c/c+a
Vì a,b,c thuộc Z+ nên a/a+b > 0 ; b/b+c > 0 ; c/c+a > 0
=> A > a/a+b+c + b/a+b+c + c/a+b+c = 1
Lại có : a < a+b ; b < b+c ; c < c+a => 0 < a/a+b < a ; 0 < b/b+c < 1 ; 0 < c/c+a < 1
=> A < a+c/a+b+c + b+a/a+b+c + c+b/a+b+c = 2
=> 1 < A < 2
=> A ko phải là số tự nhiên
Tk mk nha
a,ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU.
TA CÓ:\(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{d}\)=\(\frac{d}{e}\)=>\(\frac{2a^2}{2b^2}\)=\(\frac{3b^2}{3c^2}\)=\(\frac{4c^2}{4d^2}\)=\(\frac{5d^2}{5e^2}\)=\(\frac{2a^2+3b^2+4c^2+5d^2}{2b^2+3c^2+4d^2+5e^2}\)(đfcm)
áp dụng phương pháp đặt k đó bạn . có ở trong sách giáo khoa bài hai tỉ số bằng nhau đó
ta có a/b = c/d = k suy ra a=bk, c=dk
suy ra a^2 +b^2 / c^2 + d^2 = (bk)^2 +b^2/(dk)^2 -d^2 =..... bạn rút ra tối giản sẽ được k^2+1/K^2-1(1)
bạn thế vào phân số còn lại rồi rút gọn thành k^2+1/ k^2-1(2)
từ 1 và 2 suy ra .....
câu b tương tự
a)Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}=\frac{abcd}{bcde}=\frac{a}{e}\) (1)
Mặt khác,theo tính chất dãy tỉ số bằng nhau,ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}=\frac{a+b+c+d}{b+d+c+e}=\frac{a+b+c+d}{b+c+d+e}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{e}=\left(\frac{a+b+c+d}{b+c+d+e}\right)^{\left(đpcm\: \right)}\)
b) Xin phép sửa đề! =) CMR: \(\frac{a}{e}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}\Rightarrow\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{b^4}{c^4}=\frac{d^4}{e^4}=\frac{abcd}{bcde}=\frac{a}{e}\) (1)
Mặt khác theo t/c dãy tỉ số bằng nhau,ta có: \(\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{b^4}{c^4}=\frac{d^4}{e^4}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\) (2)
Từ (1) và (2) ta có: \(\frac{a}{e}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}^{\left(đpcm\right)}\)
P/s: Bạn đánh sai đề hoài như thế sẽ ảnh hưởng đến việc giải bài của các bạn khác gây khó khăn cho họ. Như vậy,họ sẽ không giúp bạn nữa. Rút kinh nghiệm lần sau đánh đề cẩn thận hơn nhé!
a) Có \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}\Leftrightarrow\frac{abcd}{bdce}=\frac{a}{2}\) (1)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}=\frac{a+c+b+d}{b+d+c+e}\)(2)
Từ (1) và (2) \(\Rightarrow\)\(\frac{a}{e}=\left(\frac{a+b+c+d}{b+c+d+e}\right)\)( đpcm )
b) Mình sửa lại tí nha: \(\frac{a}{e}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\)
Có \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}=\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{b^4}{c^4}=\frac{d^4}{e^4}=\frac{\left(abcd\right)^4}{\left(bdce\right)^4}=\frac{a}{e}\)(1)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{b^4}{c^4}=\frac{d^4}{e^4}=\frac{a^4+c^4+b^4+d^4}{b^4+d^4+c^4+e^4}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a}{e}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\)( đpcm )