Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CMR :1,a2+b2=<a+b>2-2ab
2,a3+b3=<a+b>3-3ab.<a+b>
3,a3-b3=<a-b>3+3ab.<a+b>
Cho :a+b=1
Tính :A=a3+b3+3ab
2
Ta có:
VP=(a+b)3−3ab(a+b)VP=(a+b)3-3ab(a+b)
=a3+b3+3ab(a+b)−3ab(a+b)=a3+b3+3ab(a+b)-3ab(a+b)
=a3+b3=VT(dpcm)
1, \(VT=a^2+b^2=a^2+b^2+2ab-2ab=\left(a+b\right)^2-2ab=VP\left(đpcm\right)\)
\(a^2+b^2=a^3+b^3=a^4+b^4\)
\(\Rightarrow\left(a^3+b^3\right)^2=\left(a^2+b^2\right)\left(a^4+b^4\right)\)
\(\Rightarrow a^6+b^6+2a^3b^3=a^6+b^6+a^2b^4+a^4b^2\)
\(\Rightarrow2a^3b^3=a^2b^2\left(a^2+b^2\right)\)
\(\Rightarrow2ab=a^2+b^2\)
\(\Rightarrow\left(a-b\right)^2=0\)
\(\Rightarrow a=b\)
Thế vào \(a^2+b^2=a^3+b^3\)
\(\Rightarrow a^2+a^2=a^3+a^3\Rightarrow2a^3=2a^2\Rightarrow a=b=1\)
\(\Rightarrow a+b=2\)
thôi mk tự lm đc rồi:
(a^3- 3ab^2)^2=361
=a^6- 6a^4b^2+ 9a^2 b^4
(b^3-3a^2b)^2=9604
=b^6- 6a^2b^4+9a^4 b^2
cộng 2 vế->(a^2+b^2)^3= 9604+361= 9965
mn check hộ mk nha
\(a+b+c=1\)
\(\Leftrightarrow\left(a+b+c\right)^3=1\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=1\)
\(\Leftrightarrow1+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=1\)'
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\)
Không mất tính tổng quát, giả sử \(a+b=0\), các trường hợp còn lại làm tương tự.
Khi đó từ \(a+b+c=1\) suy ra \(c=1\) (thỏa mãn). Thế thì \(T=0^{2023}+0^{2023}+1^{2023}=1\).
Như vậy \(T=1\)
Giúp mình vs ai đúng mới tích cho
Sửa đề: Cho a,b dương
a3 + b3 = 3ab - 1
⇔ ( a + b )3 - 3ab( a + b ) = 3ab - 1
⇔ ( a + b )3 - 3ab( a + b ) - 3ab + 1 = 0
⇔ [ ( a + b )3 + 1 ] - [ 3ab( a + b ) + 3ab ] = 0
⇔ ( a + b + 1 )[ ( a + b )2 - ( a + b ).1 + 12 ] - 3ab( a + b + 1 ) = 0
⇔ ( a + b + 1 )( a2 + b2 + 2ab - a - b + 1 - 3ab ) = 0
⇔ ( a + b + 1 )( a2 + b2 - ab - a - b + 1 ) = 0
Vì a, b dương => a, b > 0 => a + b + 1 > 0
Xét a2 + b2 - ab - a - b + 1 = 0 ta có :
a2 + b2 - ab - a - b + 1 = 0
⇔ 2( a2 + b2 - ab - a - b + 1 ) = 2.0
⇔ 2a2 + 2b2 - 2ab - 2a - 2b + 2 = 0
⇔ ( a2 - 2ab + b2 ) + ( a2 - 2a + 1 ) + ( b2 - 2b + 1 ) = 0
⇔ ( a - b )2 + ( a - 1 )2 + ( b - 1 )2 = 0
Vế trái luôn ≥ 0 ∀ a, b. Dấu "=" xảy ra khi a = b = 1
Khi đó : a2018 + b2019 = 12018 + 12019 = 1 + 1 = 2
=> đpcm