K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2018

     \(a^3+b^3=3ab-1\)

\(\Rightarrow a^3+b^3+1-3ab=0\)

\(\Rightarrow\left(a+b\right)^3+1-3ab\left(a+b\right)-3ab=0\)

\(\Rightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b\right)=0\)

\(\Rightarrow\left(a+b+1\right)\left(a^2-ab+b^2-a-b+1\right)=0\)

Mà \(a,b>0\Rightarrow a+b+1>0\)

\(\Rightarrow a^2-ab+b^2-a-b+1=0\)

\(\Rightarrow2a^2-2ab+2b^2-2a-2b+2=0\)

\(\Rightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\)

\(\Rightarrow a=b=1\Rightarrow a^{2018}+b^{2019}=1+1=2\)

16 tháng 8 2021

2

Ta có:

VP=(a+b)3−3ab(a+b)VP=(a+b)3-3ab(a+b)

     =a3+b3+3ab(a+b)−3ab(a+b)=a3+b3+3ab(a+b)-3ab(a+b)

     =a3+b3=VT(dpcm)

16 tháng 8 2021

1, \(VT=a^2+b^2=a^2+b^2+2ab-2ab=\left(a+b\right)^2-2ab=VP\left(đpcm\right)\)

21 tháng 11 2018

a) HS tự chứng minh.

b) Áp dụng tính được:

i) 9261;                        ii) 7880599;         

iii) 5840;                      iv) 12140.

28 tháng 6 2017

Biến đổi VP

=> VT = VP

=> Đpcm

21 tháng 5 2017

Theo mình: M=3

20 tháng 11 2020

\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+b^2+2ab\right)\)

\(=\left(a^2-ab+b^2\right)+3ab\left(a+b\right)^2\)

\(=a^2-ab+b^2+3ab\)

\(=a^2+2ab+b^2\)

\(=\left(a+b\right)^2=1\)

AH
Akai Haruma
Giáo viên
24 tháng 9 2021

Đề phải là CMR $a^3-b^3-3ab=1$ mới đúng bạn nhé.

Lời giải:

Vì $a-b=1$ nên:

$a^3-b^3-3ab=a^3-b^3-3ab(a-b)=a^3-3a^2b+3ab^2-b^3$

$=(a-b)^3=1^3=1$

Ta có đpcm.

21 tháng 10 2021

= a^3 + 3a^2.b + 3ab^2 + b3 − 3a^b − 3ab^2

= a^3 + b^3 = a3+b3=VT (Đpcm)

14 tháng 5 2021

a )

`VP= (a+b)^3-3ab(a+b)`

     `=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2`

     `=a^3+b^3 =VT (đpcm)`

b) 

b) Ta có

`VT=a3+b3+c3−3abc`

     `=(a+b)3−3ab(a+b)+c3−3abc`

     `=[(a+b)3+c3]−3ab(a+b+c)`

     `=(a+b+c)[(a+b)2+c2−c(a+b)]−3ab(a+b+c)`

     `=(a+b+c)(a2+b2+2ab+c2−ac−bc−3ab)`

    `=(a+b+c)(a2+b2+c2−ab−bc−ca)=VP`

  
14 tháng 5 2021

 

a) Ta có:

`VP= (a+b)^3-3ab(a+b)`

     `=a^3 + b^3+3ab ( a + b )- 3ab ( a + b )`

     `=a^3 + b^3=VT(dpcm)`

b) Ta có

`VT=a^3+b^3+c^3−3abc`

     `=(a+b)^3−3ab(a+b)+c^3−3abc`

     `=[(a+b)^3+c^3]−3ab(a+b+c)`

     `=(a+b+c)[(a+b)^2+c^2−c(a+b)]−3ab(a+b+c)`

     `=(a+b+c)(a^2+b^2+2ab+c^2−ac−bc−3ab)`

    `=(a+b+c)(a^2+b^2+c^2−ab−bc−ca)=VP`

NV
23 tháng 7 2021

a;b;c ;à độ dài 3 cạnh của tam giác \(\Rightarrow a;b;c>0\)

Ta có:

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (do \(a+b+c>0\))

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

Hay tam giác ABC đều