Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)a+b=1
A=(a+b)(a2-ab+b2)+3ab[(a+b)2-2ab]+6a2b2 = a2-ab+b2+3ab(1-2ab)+6a2b2=a2+2ab+b2=(a+b)2=1
b) làm như trên hoặc có cách để tính nhanh
x-y =1
chon x=1;y=0 thay vào ta được B=1
a, A= a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b) = a3 + b3 + 3ab(a2 + b2) + 6a2b2
= ( a + b)(a2 - ab + b2)+ 3ab(a2 +b2+ 2ab)
= a2 - ab + b2 + 3ab ( a+b)2
= a2 - ab + b2 + 3ab
= a2 +2ab + b2= (a+b)2 = 1
b, B = x3 - y3 - 3xy
= (x-y)(x2+xy+y2) -3xy
= x2+xy+y2 -3xy
= x2-2xy+y2
= (x-y)2 = 1
chúc bn hc tốt ^^
M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)
M = (a + b).(a2 - ab + b2) + 3ab[a2 + b2 + 2ab(a + b)]
M = a2 - ab + b2 + 3ab.(a2 + b2 + 2ab)
M = a2 - ab + b2 + 3ab.(a + b)2
M = a2 - ab + b2 + 3ab
M = a2 + b2 + 2ab
M = (a + b)2
M = 1
\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)
\(=1-ab+3ab\left(1-2ab\right)+6a^2b^2\)
\(=1-3ab+3ab-6a^2b^2+6a^2b^2=1\)
Vậy M=1
M = a3 + b3 + 3ab( a2 + b2 ) + 6a2b2( a + b )
= ( a + b )3 - 3ab( a + b ) + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )
= 13 - 3ab.1 + 3ab( 12 - 2ab ) + 6a2b2.1
= 1 - 3ab + 3ab - 6a2b2 + 6a2b2
= 1
2) b)
Do \(a+b+c=9\Rightarrow\left(a+b+c\right)^2=81\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=81\)
\(\Rightarrow2\left(ab+bc+ac\right)=81-141=-60\)
\(ab+bc+ac=-60:2=-30\)
a, B=x^3 + 3xy +y^3 = x^3 +3xy(x+y)+y^3 (vì x+y=1)
= (x+y)^3
= 1^3 =1
b, (a+b+c)^2 =a^2 +b^2 +c^2 +2ab +2bc +2ac
9^2 = 141 +2(ab+bc+ac)
-60 = 2(ab+bc+ac)
ab+ac+bc=-30
Vậy M=-30
c, N =(x+y)^3 -3(x+y)(x^2+y^2) +2(x^3+y^3)
= x^3 + 3x^2 .y + 3xy^2 + -3(x^3+xy^2 +x^2 .y+y^3)+ 2x^3 +2y^3
= x^3 +3x^2 .y + 3xy^2 - 3x^3 -3xy^2 -3x^2 .y -3y^3 +2x^3 +2y^3
= 0
Vậy N=0 .Chúc bạn học tốt.
\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab(\left(a+b\right)^2-2ab)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(\left(a+b\right)^2-3ab\right)+3ab\left(\left(a+b\right)^2-2ab\right)+6a^2b^2\left(a+b\right)\)
\(=1-3ab+3ab\left(1-2ab\right)+6a^2b^2\)
\(=1-3ab+3ab-6a^2b^2+6a^2b^2\)
\(=1\)
\(x^2+y^2-xy-2x-2y+9=x^2+y^2+2xy-2x-2y+9-3xy\)
\(=\left(x+y\right)^2-2\left(x+y\right)+9-3xy=\left(x+y-2\right)\left(x+y\right)+9-3xy.\)
\(đếnđâytịt\)
b
c, =3 dễ
\(\frac{3x^2-6x+9}{x^2-2x+3}=\frac{3\left(x^2-2x+3\right)}{x^2-2x+3}=3\)