Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:A=\(\frac{\sqrt{x}-3}{\sqrt{x}+2}=\frac{\left(\sqrt{x}+2\right)-5}{\sqrt{x}+2}=\frac{\sqrt{x}+2}{\sqrt{x}+2}-\frac{5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{x}+2}\)
Vì 1\(\in\)Z nên Để A \(\in\)Z thì \(\frac{5}{\sqrt{x}+2}\in Z\)
Nghĩa là: \(\sqrt{x}+2\inƯ\left(5\right)=\left\{-1;1;-5;5\right\}\)
Do đó:
\(\sqrt{x}+2\) | -1 | 1 | -5 | 5 |
\(\sqrt{x}\) | -3 | -1 | -7 | 3 |
\(x\) | (loại) | (loại) | (loại) | 9 |
Vậy với x=9 thì A \(\in\)Z
a)
1, \(A=\frac{4x-7}{x-2}=\frac{4x-8+1}{x-2}=\frac{2\left(x-2\right)+1}{x-2}=2+\frac{1}{x-2}\)
A nguyên <=> \(\frac{1}{x-2}\) nguyên <=> \(1⋮x-2\)
<=>\(x-2\inƯ\left(1\right)=\left\{-1;1\right\}\Leftrightarrow x\in\left\{1;3\right\}\)
2,\(B=\frac{3x^2-9x+2}{x-3}=\frac{3x\left(x-3\right)+2}{x-3}=3x+\frac{2}{x-3}\)
B nguyên <=> \(\frac{2}{x-3}\) nguyên <=> \(2⋮x-3\)
<=>\(x-3\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\Leftrightarrow x\in\left\{1;2;4;5\right\}\)
Vậy .............
b)Kết hợp các giá trị của x ở phần a ta thấy cả 2 biểu thức A và B nguyên khi x=1
a) Để A nguyên thì x - 2 ⋮ 3
=> x - 2 thuộc B(3) = { 0; 3; 6; 9; .... }
=> x thuộc { 2; 5; 8; 11; .... }
Vậy........
a) Để A là số nguyên <=> x - 2 \(⋮\)3
Ta có : x - 2 \(⋮\)3 => x - 2 \(\in\)B(3) = {0; 3; 6; 9; ...}
=> x = {2; 5; 8; 11; ....}
b) Để B là số nguyên <=> 5 \(⋮\)x + 3
Ta có : 5 \(⋮\)x + 3 <=> x + 3 \(\in\)Ư(5) = {1; 5; -1; -5}
Lập bảng :
x + 3 | 1 | 5 | -1 | -5 |
x | -2 | 2 | -4 | -8 |
Vậy x \(\in\) {-2; 2; -4; -8} thì B là số nguyên
1,b, 2xy - x = y + 5
<=> 4xy - 2x = 2y + 10
<=> 2x(2y - 1) - (2y - 1) = 11
<=> (2x - 1)(2y - 1) = 11
Lập bảng ra làm nốt
\(1,c,\frac{1}{x}-3=-\frac{1}{y-2}\)
\(\Leftrightarrow y-2-3x\left(y-2\right)=-x\)
\(\Leftrightarrow y-2-3xy+6x+x=0\)
\(\Leftrightarrow-3xy+7x+y-2=0\)
\(\Leftrightarrow-x\left(3y-7\right)+y-2=0\)
\(\Leftrightarrow-3x\left(3y-7\right)+3y-6=0\)
\(\Leftrightarrow-3x\left(3y-7\right)+\left(3y-7\right)=-1\)
\(\Leftrightarrow\left(1-3x\right)\left(3y-7\right)=-1\)
Lập bảng làm nốt
Ta có:\(\frac{5-x}{x-2}=\frac{-\left(x-2\right)+3}{x-2}=\frac{3}{x-2}-1\)\(\left(x\ge3;nguyên\right)\)
Để B nguyên thì 3 chia hết cho x-2 hay \(x-2\inƯ\left(3\right)\)
Vậy Ư(3) là:[1,-1,3,-3]
Do đó ta có bảng sau:
Vậy để B nguyên thì x=[-1;1;3;5]