Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:A=\(\frac{\sqrt{x}-3}{\sqrt{x}+2}=\frac{\left(\sqrt{x}+2\right)-5}{\sqrt{x}+2}=\frac{\sqrt{x}+2}{\sqrt{x}+2}-\frac{5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{x}+2}\)
Vì 1\(\in\)Z nên Để A \(\in\)Z thì \(\frac{5}{\sqrt{x}+2}\in Z\)
Nghĩa là: \(\sqrt{x}+2\inƯ\left(5\right)=\left\{-1;1;-5;5\right\}\)
Do đó:
\(\sqrt{x}+2\) | -1 | 1 | -5 | 5 |
\(\sqrt{x}\) | -3 | -1 | -7 | 3 |
\(x\) | (loại) | (loại) | (loại) | 9 |
Vậy với x=9 thì A \(\in\)Z
\(A=\frac{2.1006\sqrt{x}+2+3}{1006\sqrt{x}+1}=\frac{2.\left(1006\sqrt{x}+1\right)+3}{1006\sqrt{x}+1}=2+\frac{3}{1006\sqrt{x}+1}\)
\(1006\sqrt{x}+1\) là ước của 3
=> x=0
Ta có:\(\frac{5-x}{x-2}=\frac{-\left(x-2\right)+3}{x-2}=\frac{3}{x-2}-1\)\(\left(x\ge3;nguyên\right)\)
Để B nguyên thì 3 chia hết cho x-2 hay \(x-2\inƯ\left(3\right)\)
Vậy Ư(3) là:[1,-1,3,-3]
Do đó ta có bảng sau:
x-2 | -3 | -1 | 1 | 3 |
x | -1 | 1 | 3 | 5 |
Vậy để B nguyên thì x=[-1;1;3;5]
x/5<5/4=>4x/20<25/4=>4x<25(1)
5/4<(x+2)/5=>25/4<4x+8(2)
Tu (1) va (2)=>4x<25<4x+8=>x=6