Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn đánh lại đề đi, Để ghi dấu mũ bạn ấn nút "x2" trên thanh công cụ, sau khi bạn gõ xong dấu mũ rồi bạn ấn lại nó để đưa về trạng thái thường
\(\frac{\left(a+b\right)2}{\left(c+d\right)2}=\frac{2a+2b}{2c+2d}\)
Vậy \(\frac{\left(a+b\right)2}{\left(c+d\right)2}=\frac{2a+2b}{2c+2d}\)
đặt a/b=c/d=k=>a=bk;c=dk
=>\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left(b\left(k+1\right)\right)^2}{\left(d\left(k+1\right)\right)^2}=\frac{b^2}{d^2}\) (1)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\) (2)
từ (1) và (2)=>đpcm
tick nhé
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{c}{d}.\dfrac{c}{d}=\dfrac{a}{b}.\dfrac{c}{d}\)
\(\Rightarrow\dfrac{ac}{bd}=\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{a^2+c^2}{b^2+d^2}\)
Ta có:
a/(1+b²) = a- ab²/(1+b²) ≥ a - ab/2 (do 1+b² ≥ 2b)
Tương tự ta có:
b/(1+c²) ≥ b- bc/2
c/(1+d²) ≥ c - cd/2
d/(1+a²) ≥ d - ad/2
Cộng vế với vế ta được:
VT = a/(1+b²) + b/(1+c²) + c/(1+d²) + d/(1+a²) ≥ (a+b+c+d) - (ab+bc+cd+da)/2
VT ≥ (a+b+c+d -ab+bc+cd+da)/2 + (a+b+c+d)/2
Ta có:
ab+bc+cd+da = (a+c)(b+d) ≤ [(a+b+c+d)/2]² = 4 = a+b+c+d
=> a+b+c+d ≥ ab+bc+cd+da
=> VT ≥ (a+b+c+d)/2 =2
Dấu = khi a=b=c=d=1
10. a) Ta có : (a + b)2 + (a – b)2 = 2(a2 + b2). Do (a – b)\(^2\) ≥ 0, nên (a + b)\(^2\) ≤ 2(a2 + b2).
b) Xét : (a + b + c)\(^2\) + (a – b)\(^2\) + (a – c)\(^2\) + (b – c)\(^2\)
. Khai triển và rút gọn, ta được : 3(a\(^2\) + b\(^2\) + c\(^2\)).
Vậy : (a + b + c)\(^2\) ≤ 3( a\(^2\) + b\(^2\) + c\(^2\)).
Cách khác : Biến đổi tương đương
a, \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)luôn đúng
b, \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\le3a^2+3b^2+3c^2\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(Luôn đúng)
Đặt \(\frac{a}{b}=\frac{d}{c}=k\)
=> a=bk; b=ck
Suy ra:
\(\frac{a^2+d^2}{b^2+c^2}=\frac{\left(bk\right)^2+\left(ck\right)^2}{b^2+c^2}=\frac{k^2\left(b^2+c^2\right)}{b^2+c^2}=k^2\)
\(\frac{a.d}{b.c}=\frac{bkck}{b.c}=\frac{k^2.b.c}{b.c}=k^2\)
=>\(\frac{a^2+d^2}{b^2+c^2}=\frac{ad}{bc}\)
a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{3b+5d}{3a+5c}=\dfrac{3b+5d}{3bk+3dk}=\dfrac{1}{k}\)
\(\dfrac{b-2d}{a-2c}=\dfrac{b-2d}{bk-2dk}=\dfrac{1}{k}\)
=>\(\dfrac{3b+5d}{3a+5c}=\dfrac{b-2d}{a-2c}\)
b: \(\dfrac{ab}{a^2-b^2}=\dfrac{bk\cdot b}{b^2k^2-b^2}=\dfrac{k}{k^2-1}\)
\(\dfrac{cd}{c^2-d^2}=\dfrac{dk\cdot d}{d^2k^2-d^2}=\dfrac{k}{k^2-1}\)
=>ab/a^2-b^2=cd/c^2-d^2
c: \(\dfrac{a^2+b^2}{\left(a+b\right)^2}=\dfrac{b^2k^2+b^2}{\left(bk+b\right)^2}=\dfrac{k^2+1}{\left(k+1\right)^2}\)
\(\dfrac{c^2+d^2}{\left(c+d\right)^2}=\dfrac{d^2k^2+d^2}{\left(dk+d\right)^2}=\dfrac{k^2+1}{\left(k+1\right)^2}\)
=>\(\dfrac{a^2+b^2}{\left(a+b\right)^2}=\dfrac{c^2+d^2}{\left(c+d\right)^2}\)
\(a,\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow\dfrac{a^2}{c^2}=\dfrac{c^2}{b^2}=\dfrac{a^2+c^2}{b^2+c^2}\left(1\right)\)
Mà \(\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow ab=c^2\Leftrightarrow\dfrac{a}{b}=\dfrac{c^2}{b^2}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\tođpcm\)
\(b,\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow ab=c^2\)
\(\Leftrightarrow\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{\left(b-a\right)\left(b+a\right)}{a^2+ab}=\dfrac{\left(b-a\right)\left(b+a\right)}{a\left(a+b\right)}=\dfrac{b-a}{a}\left(đpcm\right)\)
bn có chép sai đề bài ko đấy , mình làm ko ra. Bn thử nhìn kĩ lại đề bài xem
Tú ơi, đề đúng phải là\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{a^2+c^2}{b^2+d^2}\).
Giải:
Áp dụng tính chất dãy tỉ số bàng nhau, ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
Từ đó:
\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Vậy\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{a^2+c^2}{b^2+d^2}\)(đpcm)