K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2018

\(B=31n^3+23n+224=30n^3+24n+240+n^3-n-16\)

B là bội của 6 <=>\(n^3-n-16\)là bội của 6

\(n^3-n=n\left(n^2-1\right)=n\left(n^2+n-n-1\right)=n\left[n\left(n+1\right)-\left(n+1\right)\right]\)\(=n\left(n+1\right)\left(n-1\right)\)

Trong 3 số liên tiếp,tồn tại 1 số chia hết cho 3,ít nhất 1 số chia hết cho 2 nên nó chia hết cho 6.Mà 16 không chia hết cho 6 nên B không thể là bội của 6

Đề sai rồi check lại đi

14 tháng 1 2018

2)

Nếu 3^n  +1 là bội của 10 thì 3^n  +1 có tận cùng là 0

=> 3n có tận cùng là 9

Mà : 3^n+4  +1 = 3^n . 3^4  = .....9 . 81 + 1  = .....9 +1 = ......0

hay 3^n+4  có tận cùng là 0 => 3^n+4  là bội của 10

Vậy 3^n+4  là bội của 10.

14 tháng 1 2018

1.b)

Khi chia cho 3 thì số dư có thể là 1,2 mà 2 số dư khác nhau vậy một số có số dư là 1, một số có số dư là 2. Khi cộng 2 số này lại ta được số dư : 1 + 2 = 3, mà số chia là 3 nên : 3 chia hết cho 3. Vậy hai số đó phải chia hết cho 3

30 tháng 7 2015

B=5+52+53+54+...+560

= (5+52)+(53+54)+...+(559+560)

= 5(1+5)+53.(1+5)+...+559.(1+5)

= 5.6+53.6+...+559.6

= 6.(5+53+...+559) chia hết cho 6

=> B chia hét cho 6

25 tháng 7 2018

\(31n^3+11n\)

\(=25n^3+6n^3+5n+6n\)

\(=5n\left(5n^2+1\right)+6n\left(n^2+1\right)\)

Do \(5n^2⋮5\Rightarrow5n^2+1⋮6\)

Lại có \(6n\left(n^2+1\right)⋮6\)

\(\RightarrowĐPCM\)

25 tháng 7 2018

Ta có : A = \(31n^3+11n\)\(=31n^3-n+12n\)\(=n.31\left(n^2-1\right)+12n\)\(=31.n\left(n-1\right).\left(n+1\right)+12n\)

Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp 

nên (n-1).n.(n+1) chia hết cho 6

=> (n-1).n.(n+1).31 chia hết cho 6

Và 12n chia hết cho 6             

 =>31 (n-1).n.(n+1) + 12n  chia hết cho 6

vậy A chia hết cho 6