K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

\(A=a+\frac{1}{a^2}=\left(\frac{a}{8}+\frac{a}{8}+\frac{1}{a^2}\right)+\frac{3a}{4}\ge3\sqrt[3]{\frac{a}{8}\cdot\frac{a}{8}\cdot\frac{1}{a^2}}+\frac{3.2}{4}=\frac{3}{4}+\frac{6}{4}=\frac{9}{4}\)

Dấu "=" xảy ra khi a=2

Vậy minA=9/4 khi a=2

28 tháng 6 2016

BĐT svacxo là j vậy? Cho mk dạng tổng quát đc ko?

1 tháng 4 2018

1. áp dụng BĐT cô-si:

\(\frac{c+ab}{a+b}+\frac{a+b}{\frac{8}{9}}\ge2\sqrt{\frac{c+ab}{a+b}+\frac{a+b}{\frac{8}{9}}}=2\sqrt{\frac{c+ab}{\frac{8}{9}}}\)

Tương tự: \(\frac{a+bc}{b+c}+\frac{b+c}{\frac{8}{9}}\ge2\sqrt{\frac{a+bc}{\frac{8}{9}}}\) và \(\frac{a+ac}{a+c}+\frac{a+c}{\frac{8}{9}}\ge2\sqrt[]{\frac{b+ac}{\frac{8}{9}}}\)

cộng vế theo vế :M= \(\frac{c+ab}{a+b}+\frac{a+bc}{b+c}+\frac{b+ac}{a+c}+\frac{a+b}{\frac{8}{9}}+\frac{b+c}{\frac{8}{9}}+\frac{a+c}{\frac{8}{9}}\ge2\sqrt{\frac{a+b+c+ab+bc+ac}{\frac{8}{9}}}\)(1)

mà a+b+c=1 và \(ab+bc+ac\le\frac{1}{3}\) ( tự chứng minh từ \(a^2+b^2+c^2\ge ab+bc+ac\) =>.....)

thay vào(1) => đpcm

1 tháng 4 2018

cái chỗ \(2\sqrt{\frac{c+ab}{a+b}.\frac{a+b}{\frac{8}{9}}}\) là nhân chứ không phải cộng nha

ai nhanh nhat thi k

6 tháng 4 2018

Tìm trên mạng bạn nhé . 

Chúc bạn học giỏi ?

Cick cho mình nhé . 

bài dài quá nên mình không chép được

7 tháng 6 2020

Bài làm:

Ta có: \(A=x+\frac{1}{x^2}=\left(\frac{1}{x^2}+\frac{x}{8}+\frac{x}{8}\right)+\frac{3}{4}x\ge3\sqrt[3]{\frac{1}{x^2}.\frac{x}{8}.\frac{x}{8}}+\frac{3}{4}.2\)

\(=3.\frac{1}{4}+\frac{3}{2}=\frac{3}{4}+\frac{3}{2}=\frac{9}{4}\)

Dấu "=" xảy ra khi: \(\frac{1}{x^2}=\frac{x}{8}\Leftrightarrow x^3=8\Leftrightarrow x=2\)

Vậy \(Min\left(A\right)=\frac{9}{4}\)khi \(x=2\)

Học tốt!!!!

1 tháng 2 2019

\(\frac{1}{a^2}=\frac{1}{\left(bc\right)^2}\)

\(\Rightarrow\frac{1}{a^2}+1=\frac{1}{\left(bc\right)^2}+1\ge2\frac{1}{bc}=2a\)

1 tháng 2 2019

Bạn Hoàng sai rồi nhé: 

cho \(a=\frac{3}{2};b=2;c=\frac{1}{3}\) (t/m đk abc=1)

Suy ra \(a+b+c=\frac{3}{2}+2+\frac{1}{3}=3,8\left(3\right)>3\) nhé

5 tháng 5 2019

Đặt \(\frac{a}{b}=x\Rightarrow\frac{b}{a}=\frac{1}{x}\)

\(\Rightarrow x^2+\frac{1}{x^2}-1>2\left(x-\frac{1}{x}\right)\)

\(\Leftrightarrow\frac{x^4-2x^3-x^2+2x+1}{x^2}>0\)

\(\Leftrightarrow x^3\left(x-2\right)-x\left(x-2\right)+1>0\)

\(\Leftrightarrow x\left(x-2\right)\left(x-1\right)\left(x+1\right)+1>0\)

Có: \(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\)là tích của 4 số tự nhiên liên tiếp ta có:

\(\Rightarrow x\left(x-2\right)\left(x-1\right)\left(x+1\right)\ge0\)

\(\Rightarrow x\left(x-2\right)\left(x-1\right)\left(x+1\right)+1\ge1>0\)

Đúng không ta?

5 tháng 5 2019

Sửa từ dòng số 6:

\(\Leftrightarrow\)\(\left(x^2-x-2\right)\left(x^2-x\right)+1\ge0\)

Đặt \(x^2-x=t\)

\(\Rightarrow\left(t-2\right)t+1\ge0\)

\(\Leftrightarrow t^2-2t+1\ge0\)

\(\Leftrightarrow\left(t-1\right)^2\ge0\)( luôn đúng )

Dấu " = " xảy ra khi ........................

23 tháng 2 2019

\(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\ge2\)

\(\Leftrightarrow a^2+2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+2\ge2\)

<=> Sai đề