Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)
2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
=>ĐPcm
3)(a+b+c)2\(\ge\)3(ab+bc+ca)
=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca
=>a2+b2+c2-ab-bc-ca\(\ge\)0
=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0
=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0
=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0
4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
Đặt \(P=a^2+b^2+\left(\frac{1+ab}{a+b}\right)^2\), ta được:
\(P=\left(a+b\right)^2+\left(\frac{1+ab}{a+b}\right)^2-2ab\)
Áp dụng bất đẳng thức Cô-si với bộ \(\left(a+b\right)^2\) và \(\left(\frac{1+ab}{a+b}\right)^2\), ta có:
\(P=\left(a+b\right)^2+\left(\frac{1+ab}{a+b}\right)^2-2ab\ge2\sqrt{\left(a+b\right)^2\left(\frac{1+ab}{a+b}\right)^2}-2ab=2\left(1+ab\right)-2ab=2\)
3 bài thì thấy 1 bài có trên mạng rồi, buồn thật:( Bài cuối từ từ tí mở Maple lên check đề. Thấy lạ lạ không dám làm ngay:v
Bài 1: Ez game, chỉ là Buffalo Way, mà Ji Chen (tác giả BĐT Iran 96 có giải rồi, mình không giải lại): hard inequalities
Bài 2: Đặt \(\left(a;b;c\right)=\left(\frac{3x}{x+y+z};\frac{3y}{x+y+z};\frac{3z}{x+y+z}\right)\) rồi quy đồng lên xem.
Bài 3: Tí check đề cái đã.
\(a+b=1\)\(\Rightarrow\hept{\begin{cases}a-1=-b\\b-1=-a\end{cases}}\)
Ta có: \(\frac{a}{b^3-1}-\frac{b}{a^3-1}=\frac{a}{\left(b-1\right)^3+3b\left(b-1\right)}-\frac{b}{\left(a-1\right)^3+3a\left(a-1\right)}\)
\(=\frac{a}{-a^3-3ab}-\frac{b}{-b^3-3ab}=\frac{a}{-a\left(a^2+3b\right)}-\frac{b}{-b\left(b^2+3a\right)}\)
\(=\frac{-1}{a^2+3b}-\frac{-1}{b^2+3a}=\frac{-1}{a^2+3b}+\frac{1}{b^2+3a}=\frac{-\left(b^2+3a\right)+a^2+3b}{\left(a^2+3b\right)\left(b^2+3a\right)}\)
\(=\frac{-b^2-3a+a^2+3b}{a^2b^2+3a^3+3b^3+9ab}=\frac{-\left(b^2-a^2\right)+\left(3b-3a\right)}{a^2b^2+3\left(a^3+b^3\right)+9ab}\)
\(=\frac{-\left(b-a\right)\left(b+a\right)+3\left(b-a\right)}{a^2b^2+3\left[\left(a+b\right)^3-3ab\left(a+b\right)\right]+9ab}=\frac{-\left(b-a\right)+3\left(b-a\right)}{a^2b^2+3\left[1-3ab\right]+9ab}\)
\(=\frac{2\left(b-a\right)}{a^2b^2+3-9ab+9ab}=\frac{2\left(b-a\right)}{a^2b^2+3}\left(đpcm\right)\)
Đặt \(\frac{a}{b}=x\Rightarrow\frac{b}{a}=\frac{1}{x}\)
\(\Rightarrow x^2+\frac{1}{x^2}-1>2\left(x-\frac{1}{x}\right)\)
\(\Leftrightarrow\frac{x^4-2x^3-x^2+2x+1}{x^2}>0\)
\(\Leftrightarrow x^3\left(x-2\right)-x\left(x-2\right)+1>0\)
\(\Leftrightarrow x\left(x-2\right)\left(x-1\right)\left(x+1\right)+1>0\)
Có: \(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\)là tích của 4 số tự nhiên liên tiếp ta có:
\(\Rightarrow x\left(x-2\right)\left(x-1\right)\left(x+1\right)\ge0\)
\(\Rightarrow x\left(x-2\right)\left(x-1\right)\left(x+1\right)+1\ge1>0\)
Đúng không ta?
Sửa từ dòng số 6:
\(\Leftrightarrow\)\(\left(x^2-x-2\right)\left(x^2-x\right)+1\ge0\)
Đặt \(x^2-x=t\)
\(\Rightarrow\left(t-2\right)t+1\ge0\)
\(\Leftrightarrow t^2-2t+1\ge0\)
\(\Leftrightarrow\left(t-1\right)^2\ge0\)( luôn đúng )
Dấu " = " xảy ra khi ........................