\(\dfrac{\sqrt{x-3}}{x}+\dfrac{\sqrt{y-4}}{y}+\dfrac{\sqrt{z-5}}{z}\) tìm giá trị l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 8 2018

Lời giải:

Áp dụng BĐT Cô-si:

\(\sqrt{x-3}=\frac{1}{\sqrt{3}}.\sqrt{3(x-3)}\leq \frac{1}{\sqrt{3}}.\frac{3+(x-3)}{2}=\frac{x}{2\sqrt{3}}\)

\(\Rightarrow \frac{\sqrt{x-3}}{x}\leq \frac{1}{2\sqrt{3}}\)

\(\sqrt{y-4}=\frac{1}{2}\sqrt{4(y-4)}\leq \frac{1}{2}.\frac{4+(y-4)}{2}=\frac{y}{4}\)

\(\Rightarrow \frac{\sqrt{y-4}}{y}\leq \frac{1}{4}\)

\(\sqrt{z-5}=\frac{1}{\sqrt{5}}\sqrt{5(z-5)}\leq \frac{1}{\sqrt{5}}.\frac{5+(z-5)}{2}=\frac{z}{2\sqrt{5}}\)

\(\Rightarrow \frac{\sqrt{z-5}}{z}\leq \frac{1}{2\sqrt{5}}\)

Vậy \(A\leq \frac{1}{2\sqrt{3}}+\frac{1}{4}+\frac{1}{2\sqrt{5}}=A_{\max}\)

Dấu "=" xảy ra tại \(x=6; y=8; z=10\)

19 tháng 4 2018

Đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)\rightarrow\left(a,b,c\right)\)

27 tháng 1 2018

bài 3:

a, đặt x12=y9=z5=kx12=y9=z5=k

=>x=12k,y=9k,z=5k

ta có: ayz=20=> 12k.9k.5k=20

=> (12.9.5)k^3=20

=>540.k^3=20

=>k^3=20/540=1/27

=>k=1/3

=>x=12.1/3=4

y=9.1/3=3

z=5.1/3=5/3

vậy x=4,y=3,z=5/3

b,ta có: x5=y7=z3=x225=y249=z29x5=y7=z3=x225=y249=z29

A/D tính chất dãy tỉ số bằng nhau ta có:

x5=y7=z3=x225=y249=z29=x2+y2z225+499=58565=9x5=y7=z3=x225=y249=z29=x2+y2−z225+49−9=58565=9

=>x=5.9=45

y=7.9=63

z=3*9=27

vậy x=45,y=63,z=27

21 tháng 1 2018

Theo giả thiết \(\sqrt{\dfrac{yz}{x}}+\sqrt{\dfrac{xz}{y}}+\sqrt{\dfrac{xy}{z}}=3\)

\(\Rightarrow\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}+2x+2y+2z=9\)

Mặt khác, ta có bđt phụ: \(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\ge x+y+z\)

\(\Rightarrow9\ge3\left(x+y+z\right)\)

\(\Leftrightarrow x+y+z\le3\)

Áp dụng bđt Cauchy Shwarz \(\Rightarrow\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le3\left(x+y+z\right)\le9\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le3\)

Ta có: \(M=\sqrt{x}+\sqrt{y}+\sqrt{z}+\dfrac{2016}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

\(=\sqrt{x}+\sqrt{y}+\sqrt{z}+\dfrac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\dfrac{2007}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

\(\ge2\times\sqrt{9}+\dfrac{2007}{3}=675\)

Dấu "=" xảy ra ⇔ x = y = z = 1

21 tháng 1 2018

giỏi dữ vậy ta :v

18 tháng 5 2018

Áp dụng liên tiếp bất đẳng thức Mincopxki và bất đẳng thức Cauchy-Schwarz:

\(A=\sqrt{x^2+\dfrac{1}{x^2}}+\sqrt{y^2+\dfrac{1}{y^2}}+\sqrt{z^2+\dfrac{1}{z^2}}\)

\(A\ge\sqrt{\left(x+y+z\right)^2+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)

\(A\ge\sqrt{\left(x+y+z\right)^2+\left(\dfrac{\left(1+1+1\right)^2}{x+y+z}\right)^2}\)

\(A\ge\sqrt{4+\dfrac{81}{4}}=\sqrt{\dfrac{97}{4}}\)

Dấu "=" xảy ra khi: \(x=y=z=\dfrac{2}{3}\)

18 tháng 5 2018

\(B=\sqrt{x^2+\dfrac{1}{y^2}+\dfrac{1}{z^2}}+\sqrt{y^2+\dfrac{1}{z^2}+\dfrac{1}{x^2}}+\sqrt{z^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}}\)

\(B\ge\sqrt{\left(x+y+z\right)^2+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)

\(B=\sqrt{\left(x+y+z\right)^2+2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)

\(B\ge\sqrt{\left(x+y+z\right)^2+2\left(\dfrac{\left(1+1+1\right)^2}{x+y+z}\right)^2}\)

\(B\ge\sqrt{\left(x+y+z\right)^2+\dfrac{162}{\left(x+y+z\right)^2}}\)

\(B\ge\sqrt{4+\dfrac{162}{4}}=\sqrt{\dfrac{89}{2}}\)

Dấu "=" xảy ra khi: \(x=y=z=\dfrac{2}{3}\)

21 tháng 7 2018

2

\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)

A= \(\sqrt{9x^2-6x+1}+\sqrt{9x^2-12x+4}\)

A= \(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-2\right)^2}=\left|3x-1\right|+\left|3x-2\right|\)

ta có |3x-1|+|3x-2|=|3x-1|+|2-3x| ≥ |3x-1+2-3x|=1

=> A ≥ 1

=> Min A =1 khi 1/3 ≤ x ≤ 2/3

6 tháng 7 2018

\(\text{a) }\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}\\ =\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+2\left(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}\right)-2\left(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}\right)}\\ =\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2\cdot\dfrac{x+y+z}{xyz}}\\ =\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\)

\(\text{b) }\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+...+\sqrt{1+\dfrac{1}{2017^2}+\dfrac{1}{2018^2}}\\ =1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+...+1+\dfrac{1}{2017}-\dfrac{1}{2018}\\ =2016+\dfrac{1}{2}-\dfrac{1}{2018}\\ =\dfrac{2034698}{1009}\)