Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x^2+1=x^2+xy+yz+zx\)
\(=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(x+z\right)\)
Tương tự:
\(\left\{{}\begin{matrix}y^2+1=\left(y+z\right)\left(y+x\right)\\z^2+1=\left(z+y\right)\left(z+x\right)\end{matrix}\right.\)
\(A=x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(y+z\right)}{\left(x+y\right)\left(z+x\right)}}+y\sqrt{\dfrac{\left(z+x\right)\left(y+z\right)\left(x+y\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\dfrac{\left(x+y\right)\left(z+x\right)\left(y+z\right)\left(x+y\right)}{\left(z+x\right)\left(y+z\right)}}\)
\(=x\left|y+z\right|+y\left|z+x\right|+z\left|x+y\right|\)
TH1: x,y,z <0
\(A=-x\left(y+z\right)-y\left(z+x\right)-z\left(x+y\right)=-2\)
TH2: x,y,z>0
\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)=2\)
Ta có \(1+z^2=xy+yz+zx+z^2\)
\(=y\left(x+z\right)+z\left(x+z\right)\)
\(=\left(x+z\right)\left(y+z\right)\)
CMTT, \(1+x^2=\left(x+y\right)\left(x+z\right)\) và \(1+y^2=\left(x+y\right)\left(y+z\right)\)
Do đó \(\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\) \(=\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\)
\(=\sqrt{\left(y+z\right)^2}\) \(=\left|y+z\right|\)
Tương tự như thế, ta được
\(A=x\left|y+z\right|+y\left|z+x\right|+z\left|x+y\right|\)
Cái này không tính ra số cụ thể được nhé bạn. Nó còn phải tùy vào dấu của \(x+y,y+z,z+x\) nữa.
Lời giải:
$xy+yz+xz=1$
$\Rightarrow x^2+1=x^2+xy+yz+xz=(x+y)(x+z)$
Tương tự: $y^2+1=(y+z)(y+x); z^2+1=(z+x)(z+y)$
Khi đó:
\(\sum \sqrt{\frac{(x^2+1)(y^2+1)}{z^2+1}}=\sum \sqrt{\frac{(x+y)(x+z)(y+x)(y+z)}{(z+x)(z+y)}}=\sum \sqrt{(x+y)^2}\)
$=\sum (x+y)=2(x+y+z)$
\(A=\dfrac{x\sqrt{x}+x-y+y\sqrt{y}-xy\sqrt{x}-xy\sqrt{y}}{\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\dfrac{x\sqrt{x}\left(1-y\right)+x\left(1-y\sqrt{y}\right)-y\left(1-\sqrt{y}\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\dfrac{\left(1-\sqrt{y}\right)\left[x\sqrt{x}\left(1+\sqrt{y}\right)+x+x\sqrt{y}+xy-y\right]}{\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\dfrac{x\sqrt{x}+x\sqrt{xy}+x+x\sqrt{y}+xy-y}{\left(1+\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\dfrac{x\left(\sqrt{x}+1\right)+x\sqrt{y}\left(\sqrt{x}+1\right)+y\left(x-1\right)}{\left(1+\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\dfrac{x+x\sqrt{y}+y\sqrt{x}-y}{\sqrt{x}+\sqrt{y}}=\sqrt{x}-\sqrt{y}+\sqrt{xy}\)
Để A=2 thì x=2; y=2
1. Với mọi số thực x;y;z ta có:
\(x^2+y^2+z^2+\dfrac{1}{2}\left(x^2+1\right)+\dfrac{1}{2}\left(y^2+1\right)+\dfrac{1}{2}\left(z^2+1\right)\ge xy+yz+zx+x+y+z\)
\(\Leftrightarrow\dfrac{3}{2}P+\dfrac{3}{2}\ge6\)
\(\Rightarrow P\ge3\)
\(P_{min}=3\) khi \(x=y=z=1\)
1.1
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}=a>0\\\dfrac{1}{\sqrt{y}}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+\sqrt{2-b^2}=2\\b+\sqrt{2-a^2}=2\end{matrix}\right.\)
\(\Rightarrow a-b+\sqrt{2-b^2}-\sqrt{2-a^2}=0\)
\(\Leftrightarrow a-b+\dfrac{\left(a-b\right)\left(a+b\right)}{\sqrt{2-b^2}+\sqrt{2-a^2}}=0\)
\(\Leftrightarrow a=b\Leftrightarrow x=y\)
Thay vào pt đầu:
\(a+\sqrt{2-a^2}=2\Rightarrow\sqrt{2-a^2}=2-a\) (\(a\le2\))
\(\Leftrightarrow2-a^2=4-4a+a^2\Leftrightarrow2a^2-4a+2=0\)
\(\Rightarrow a=1\Rightarrow x=y=1\)
2.
\(\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^2-xy+y^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+3xy+3y^2=21\\7x^2-7xy+7y^2=21\end{matrix}\right.\)
\(\Rightarrow4x^2-10xy+4y^2=0\)
\(\Leftrightarrow2\left(2x-y\right)\left(x-2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2x\\y=\dfrac{1}{2}x\end{matrix}\right.\)
Thế vào pt đầu
...
Lời giải:
Từ \(x+y+z=xyz\Rightarrow \frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Đặt \((\frac{1}{a}, \frac{1}{b}, \frac{1}{c})=(x,y,z)\), trong đó $a,b,c>0$ thì ta có:
\(ab+bc+ac=1\) và cần phải CMR:
\(P=\frac{\sqrt{(\frac{1}{b^2}+1)(\frac{1}{c^2}+1})-\sqrt{\frac{1}{b^2}+1}-\sqrt{\frac{1}{c^2}+1}}{\frac{1}{bc}}+\frac{\sqrt{(\frac{1}{c^2}+1)(\frac{1}{a^2}+1})-\sqrt{\frac{1}{c^2}+1}-\sqrt{\frac{1}{a^2}+1}}{\frac{1}{ac}}+\frac{\sqrt{(\frac{1}{a^2}+1)(\frac{1}{b^2}+1})-\sqrt{\frac{1}{a^2}+1}-\sqrt{\frac{1}{b^2}+1}}{\frac{1}{ab}}\)
-----------------------------------------------
Ta có:
\(\frac{\sqrt{(\frac{1}{b^2}+1)(\frac{1}{c^2}+1})-\sqrt{\frac{1}{b^2}+1}-\sqrt{\frac{1}{c^2}+1}}{\frac{1}{bc}}=\sqrt{(b^2+1)(c^2+1)}-b\sqrt{c^2+1}-c\sqrt{b^2+1}\)
\(=\sqrt{(b^2+ab+bc+ac)(c^2+ac+bc+ab)}-b\sqrt{c^2+ac+bc+ab}-c\sqrt{b^2+ab+bc+ac}\)
\(=\sqrt{(b+a)(b+c)(c+a)(c+b)}-b\sqrt{(c+a)(c+b)}-c\sqrt{(b+a)(b+c)}\)
\(=(b+c)\sqrt{(a+b)(a+c)}-b\sqrt{(c+a)(c+b)}-c\sqrt{(b+a)(b+c)}(1)\)
Tương tự:
\(\frac{\sqrt{(\frac{1}{c^2}+1)(\frac{1}{a^2}+1})-\sqrt{\frac{1}{c^2}+1}-\sqrt{\frac{1}{a^2}+1}}{\frac{1}{ac}}=(a+c)\sqrt{(b+a)(b+c)}-a\sqrt{(c+a)(c+b)}-c\sqrt{(a+b)(a+c)}(2)\)
\(\frac{\sqrt{(\frac{1}{a^2}+1)(\frac{1}{b^2}+1})-\sqrt{\frac{1}{a^2}+1}-\sqrt{\frac{1}{b^2}+1}}{\frac{1}{ab}}=(a+b)\sqrt{(c+a)(c+b)}-b\sqrt{(a+b)(a+c)}-a\sqrt{(b+c)(b+a)}(3)\)
Từ \((1);(2);(3)\Rightarrow P=(b+c-c-b)\sqrt{(a+b)(a+c)}+(a+c-c-a)\sqrt{(b+a)(b+c)}+(a+b-b-a)\sqrt{(c+a)(c+b)}\)
\(=0\)
Ta có đpcm.
3) Gợi ý: Thay 1=xy+yz+xz
\(x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=x\sqrt{\dfrac{\left(y^2+xy+yz+xz\right)\left(z^2+xy+yz+xz\right)}{x^2+xy+yz+xz}}=x\sqrt{\dfrac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+z\right)\left(x+y\right)}}=x\sqrt{\left(y+z\right)^2}=x\left(y+z\right)\)
Tương tự rồi cộng vào
2
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
A= \(\sqrt{9x^2-6x+1}+\sqrt{9x^2-12x+4}\)
A= \(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-2\right)^2}=\left|3x-1\right|+\left|3x-2\right|\)
ta có |3x-1|+|3x-2|=|3x-1|+|2-3x| ≥ |3x-1+2-3x|=1
=> A ≥ 1
=> Min A =1 khi 1/3 ≤ x ≤ 2/3