\(\le\)\(\dfrac{3}{4}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2021

Giá trị nhỏ nhất là 3 căn 7 trên 2

29 tháng 8 2021

\(\dfrac{3\sqrt{17}}{2}\)

31 tháng 5 2018

https://hoc24.vn//hoi-dap/question/280689.html

9 tháng 6 2017

\(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2=x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)=4\)

\(x+y+z=2\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1\)----->thay vào

9 tháng 6 2017

Bạn có thể giải rõ ràng hơn được không? Mình cũng tự làm được đến đoạn này rồi nhưng k biết thay ntn?????

10 tháng 5 2018

\(\text{Cho 3 số dương x, y, z thỏa mãn }x+y+z=3\)

\(\text{Chứng minh rằng }T=\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+xz}}+\dfrac{z}{z+\sqrt{3z+xy}}\le1\)

➤➤➤Chứng minh:

➢ Áp dụng bất đẳng thức AM - GM

\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}=\dfrac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}\left(\text{vì }x+y+z=3\right)=\dfrac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}\le\dfrac{x}{x+\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}}=\dfrac{x}{x+\sqrt{xz}+\sqrt{xy}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

➢ Tương tự:

\(\dfrac{y}{y+\sqrt{3y+xz}}\le\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

\(\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

➢ Công vế theo vế 3 bất đẳng thức cùng chiều

\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+xz}}+\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

\(\text{Đẳng thức xảy ra khi }x=y=z=1\)

\(Max_T=1\Leftrightarrow x=y=z=1\)

21 tháng 1 2018

Theo giả thiết \(\sqrt{\dfrac{yz}{x}}+\sqrt{\dfrac{xz}{y}}+\sqrt{\dfrac{xy}{z}}=3\)

\(\Rightarrow\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}+2x+2y+2z=9\)

Mặt khác, ta có bđt phụ: \(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\ge x+y+z\)

\(\Rightarrow9\ge3\left(x+y+z\right)\)

\(\Leftrightarrow x+y+z\le3\)

Áp dụng bđt Cauchy Shwarz \(\Rightarrow\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le3\left(x+y+z\right)\le9\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le3\)

Ta có: \(M=\sqrt{x}+\sqrt{y}+\sqrt{z}+\dfrac{2016}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

\(=\sqrt{x}+\sqrt{y}+\sqrt{z}+\dfrac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\dfrac{2007}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

\(\ge2\times\sqrt{9}+\dfrac{2007}{3}=675\)

Dấu "=" xảy ra ⇔ x = y = z = 1

21 tháng 1 2018

giỏi dữ vậy ta :v

21 tháng 5 2017

from giả thiết => x+y+z=xyz

biến đổi như sau:\(\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}=\dfrac{x}{\sqrt{yz+x^2yz}}=\dfrac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)

=\(\sqrt{\dfrac{x^2}{\left(x+y\right)\left(x+z\right)}}\le\dfrac{1}{2}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)\)

21 tháng 5 2017

shit , có vậy mak t nhìn cũng ko ra ~

25 tháng 8 2017

Áp dụng bất đẳng thức cô si ta có :

\(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}=\left(\sqrt{x}\right)^3+\left(\sqrt{y}\right)^3+\left(\sqrt{z}\right)^3\ge3\sqrt[3]{\left(\sqrt{xyz}\right)^3}=3\sqrt{xyz}\)Dấu "=" xảy ra khi :\(\sqrt{x}=\sqrt{y}=\sqrt{z}\)

Do đó :\(A=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

Vậy A=8