K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2019

Solution:

\(a^3+a^2c-abc+b^2c+b^3\)

\(=a^2\left(a+c\right)+b^2\left(b+c\right)-abc\)

\(=a^2\cdot\left(-b\right)+b^2\cdot\left(-a\right)-abc\)

\(=-ab\left(a+b+c\right)\)

\(=0\)

22 tháng 8 2019

Ta có:

\(a^3+a^2c-abc+b^2c+b^3=\left(a^3+b^3\right)+\left(a^2c-abc+b^2c\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)

\(=\left(a+b+c\right)\left(a^2-ab+b^2\right)=0\)

\(a+b+c=0\) nên \(a^3+a^2c-abc+b^2c+b^3=0\)