Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lý pitago vào tam giác vuông ABC ( gt )
⇒Bc=10(cm)⇒Bc=10(cm)
Tacó: DC/DA=BC/BA=10/6=5/3⇒DC/DC+DA=5/5+3.DC/DA=BC/BA=10/6=5/3⇒DC/DC+DA=5/5+3⇒DC/8=58⇒DC=8.58=5(cm)⇒DC/8=5/8⇒DC=8.5/8=5(cm)
⇒AD=AC−DC=8−5=3(cm)

A) \(BI\) là tia phân giác
\(\Rightarrow\dfrac{AI}{IH}=\dfrac{AB}{BH}\)
\(\Rightarrow IA.BH=IH.BA\)
B) Xét \(\Delta ABH\) và \(\Delta CBA\):
\(\widehat{AHB}=\widehat{BAC}=90^o\)
\(\widehat{B}\) chung
\(\Rightarrow\Delta AHB~\Delta CBA\)
\(\Rightarrow\dfrac{BH}{BA}=\dfrac{AB}{BC}\)
\(\Rightarrow AB^2=BH.BC\)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6cm\)
C) \(BD\) là tia phân giác \(\widehat{ABC}\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AD}{DC}\)
Mà \(\dfrac{AB}{BC}=\dfrac{BH}{BA}\Rightarrow\dfrac{AD}{DC}=\dfrac{BH}{BA}=\dfrac{HI}{HA}\)

Lời giải:
a)
Tam giác $BAH$ có đường phân giác $BI$. Áp dụng tính chất đường phân giác ta có: \(\frac{IH}{IA}=\frac{BH}{BA}(1)\Rightarrow IA.BH=IH.BA\)
b)
Xét tam giác $BAH$ và $BCA$ có:
\(\widehat{B}\) chung
\(\widehat{BHA}=\widehat{BAC}(=90^0)\)
\(\Rightarrow \triangle BAH\sim \triangle BCA(g.g)\Rightarrow \frac{BA}{BC}=\frac{BH}{BA}(2)\Rightarrow BA^2=BH.BC\) (đpcm)
c)
Tam giác $BAC$ có đường phân giác $BD$, áp dụng tính chất đường phân giác: \(\frac{DA}{DC}=\frac{BA}{BC}(3)\)
Từ \((1);(2);(3)\Rightarrow \frac{IH}{IA}=\frac{BH}{BA}=\frac{BA}{BC}=\frac{DA}{DC}\) (đpcm)
Mình kẻ hình rồi, B có chung góc ở câu a) sao Oanh Lê?