Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
C A B E H D
Ta có: \(\widehat{ACB}+\widehat{ABC}=90^o\)
Xét: \(\Delta ABC\text{ và }\widehat{NBA}\)
\(\widehat{CAB}=\widehat{ANB}=90^o\)
\(\Rightarrow\Delta ABC~\Delta AHB\)
b) \(\frac{AB}{NB}=\frac{AC}{NA}\)
\(\Leftrightarrow\frac{AB}{AC}=\frac{NB}{NA}\left(1\right)\)
Chứng minh tương tự:
\(\Delta ABC~\Delta AHB\)
\(\frac{AN}{AB}-\frac{HC}{AC}\Rightarrow\frac{AB}{AC}=\frac{AN}{NC}\left(2\right)\)
\(\text{Từ (1) và (2) }\Rightarrow\frac{NB}{NA}=\frac{NA}{NC}\Rightarrow AB^2=BH.BC\left(đ\text{pcm}\right)\)
Xét tam giác vuông.
Áp dụng định lý Pi-ta-go, ta có:
\(DB^2=AB^2+AD^2=6^2+8^2=100\)
\(\Rightarrow DB=\sqrt{100}=10\left(cm\right)\)
Bài 2:
1 1 2 2 A B C D
a) Xét \(\Delta OAV\text{ và }\Delta OCD\)
Có: \(\widehat{AOB}=\widehat{COD}\left(đ^2\right)\)
\(\widehat{A_1}=\widehat{C_1}\left(\text{so le}\right)\)
\(\Rightarrow\Delta OAB~\Delta OCD\)
\(\Rightarrow\frac{OB}{OD}=\frac{OA}{OC}\Rightarrow\frac{DO}{DB}=\frac{CO}{CA}\)
b) Ta có: \(AC^2-BD^2=DC^2-AB^2\)
\(\Leftrightarrow AC^2-DC^2=BD^2-AB^2\)
\(\Delta\text{ vuông }ABC\left(\text{theo định lý Pi-ta-go}\right)\)
\(AC^2-DC^2=AD^2\left(1\right)\)
\(\Delta\text{ vuông }BDA\text{ có }\left(\text{theo định lý Pi-ta-go}\right)\)
\(BD^2-AB^2=AD^2\)
\(\text{Từ (1) và (2) }\Rightarrowđ\text{pcm}\)
A B C H D E
a. Xét 2 tam vuông HAB và ABC:
\(\widehat{B}\) chung
Suy ra: \(\Delta HBA\sim\Delta ABC\) (g.g)
=> \(\frac{AB}{BC}=\frac{HB}{AB}\)
=> AB2 = HB.BC
b. Xét tam giác vuông ABC có : BC2 = AB2 + AC2
Hay BC2 = 122 + 162
=> BC2 = 144 + 256 = 400
=> BC = \(\sqrt{400}=20\) (cm)
Tam giác ABC có: AD là đường phân giác của \(\widehat{ABC}\)
=> \(\frac{AB}{AD}=\frac{BC}{CD}\) (Tính chất đường phân giác của tam giác)
Hay\(\frac{AB}{AD}=\frac{BC}{AC-AD}\)
=> \(\frac{12}{AD}=\frac{20}{16-AD}\)
=> 12(16 - AD) = 20AD
=> 192 - 12AD = 20AD
=> -12AD - 20AD = -192
=> -32AD = -192
=> AD = 6 (cm)
c. Để mình giải sau nha bạn!!!
Câu c) :
Xét tam giác vuông ABD ta có : BD2 = AB2 + AD2
Hay BD2 = 122 + 62
BD2 = 144 + 36 = 180
=> BD = \(\sqrt{180}=6\sqrt{5}\) (cm)
Ta có : AD + DC = AC
Hay 6 + DC = 16
=> DC = 16 - 6 = 10 (cm)
Ta có : \(\Delta HBA\sim\Delta ABC\) (C/M ở câu a)
=> \(\frac{HB}{AB}=\frac{AB}{BC}\)
Hay \(\frac{HB}{12}=\frac{12}{20}\)
=> HB = \(\frac{12.12}{20}\) = 7,2 (cm)
Xét 2 tam giác vuông ABD và HBE:
\(\widehat{ABD}=\widehat{HBE}\) (BD là đường phân giác của \(\widehat{ABC}\))
Suy ra: \(\Delta ABD\sim\Delta HBE\) (g.g)
=> \(\frac{AB}{HB}=\frac{BD}{BE}\)
Hay \(\frac{12}{7,2}=\frac{6\sqrt{5}}{BE}\)
=> BE = \(\frac{7,2.6\sqrt{5}}{12}=\frac{18\sqrt{5}}{5}\)
Ta có : \(\frac{6}{10}=\frac{\frac{18\sqrt{5}}{5}}{6\sqrt{5}}\)
Hay \(\frac{DA}{DC}=\frac{BE}{BD}\) (đpcm)
Lời giải:
a)
Tam giác $BAH$ có đường phân giác $BI$. Áp dụng tính chất đường phân giác ta có: \(\frac{IH}{IA}=\frac{BH}{BA}(1)\Rightarrow IA.BH=IH.BA\)
b)
Xét tam giác $BAH$ và $BCA$ có:
\(\widehat{B}\) chung
\(\widehat{BHA}=\widehat{BAC}(=90^0)\)
\(\Rightarrow \triangle BAH\sim \triangle BCA(g.g)\Rightarrow \frac{BA}{BC}=\frac{BH}{BA}(2)\Rightarrow BA^2=BH.BC\) (đpcm)
c)
Tam giác $BAC$ có đường phân giác $BD$, áp dụng tính chất đường phân giác: \(\frac{DA}{DC}=\frac{BA}{BC}(3)\)
Từ \((1);(2);(3)\Rightarrow \frac{IH}{IA}=\frac{BH}{BA}=\frac{BA}{BC}=\frac{DA}{DC}\) (đpcm)
a) Áp dụng định lý pitago vào tam giác vuông ABC ( gt )
⇒Bc=10(cm)⇒Bc=10(cm)
Tacó: DC/DA=BC/BA=10/6=5/3⇒DC/DC+DA=5/5+3.DC/DA=BC/BA=10/6=5/3⇒DC/DC+DA=5/5+3⇒DC/8=58⇒DC=8.58=5(cm)⇒DC/8=5/8⇒DC=8.5/8=5(cm)
⇒AD=AC−DC=8−5=3(cm)
A) \(BI\) là tia phân giác
\(\Rightarrow\dfrac{AI}{IH}=\dfrac{AB}{BH}\)
\(\Rightarrow IA.BH=IH.BA\)
B) Xét \(\Delta ABH\) và \(\Delta CBA\):
\(\widehat{AHB}=\widehat{BAC}=90^o\)
\(\widehat{B}\) chung
\(\Rightarrow\Delta AHB~\Delta CBA\)
\(\Rightarrow\dfrac{BH}{BA}=\dfrac{AB}{BC}\)
\(\Rightarrow AB^2=BH.BC\)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6cm\)
C) \(BD\) là tia phân giác \(\widehat{ABC}\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AD}{DC}\)
Mà \(\dfrac{AB}{BC}=\dfrac{BH}{BA}\Rightarrow\dfrac{AD}{DC}=\dfrac{BH}{BA}=\dfrac{HI}{HA}\)