K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6

Ta có :

\(\left\{{}\begin{matrix}a+b+c=3\\ab+bc+ca=3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=ab=1\\b=bc=1\\c=ca=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\)

Nên \(E=\left(a-1\right)^{2019}+\left(b^2-1\right)^{2020}+\left(c^3-1\right)^{2021}\)

\(E=\left(1-1\right)^{2019}+\left(1^2-1\right)^{2020}+\left(1^3-1\right)^{2021}\)

\(E=0\)

15 tháng 3

gọi a/2019=b/2020=c/2021 là x

\(\Rightarrow\)a=2019*x ;b=2020*x;c=2021*x

\(\Rightarrow\)M=4*(2019*x-2020*x)*(2020-2021)-(2021*x-2019*x)^2

\(\Rightarrow\)M=4*(-x)*(-x)-(2x)^2

\(\Rightarrow\)M=4*x^2-4*x^2

⇒M=0

8 tháng 12 2021

\(a,\dfrac{3}{a+b}=\dfrac{2}{b+c}=\dfrac{1}{c+a}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{b+c}{2}=\dfrac{c+a}{1}=\dfrac{2\left(a+b+c\right)}{6}=\dfrac{a+b+c}{3}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{a+b+c}{3}\\ \Rightarrow3\left(a+b+c\right)=3\left(a+b\right)\\ \Rightarrow3\left(a+b\right)+3c=3\left(a+b\right)\\ \Rightarrow3c=0\\ \Rightarrow c=0\)

Vậy \(P=\dfrac{a+b-2019c}{a+b+2018c}=\dfrac{a+b}{a+b}=1\)

2 tháng 3 2019

=3(a-b)(b-c)(c-a) nha bn

26 tháng 12 2023

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)

\(\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}=\dfrac{1+1+1}{a+b+c}=\dfrac{3}{a+b+c}=\dfrac{3}{1}=3\)

\(\Rightarrow a=b=c=\dfrac{1}{3}\)

\(\Rightarrow A=\dfrac{a^3\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=a^3=\left(\dfrac{1}{3}\right)^3=\dfrac{1}{27}\)

15 tháng 5 2016

ab có gạch đầu ko bn?

15 tháng 5 2016

Nếu ab là ab thì mk giải thế này:

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\Leftrightarrow\frac{10a+b}{a+b}=\frac{10b+c}{b+c}=\frac{10c+a}{c+a}\)

Theo t/c dãy tỉ số=nhau:

\(\frac{10a+b}{a+b}=\frac{10b+c}{b+c}=\frac{10c+a}{c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{\left(a+b\right)+\left(b+c\right)+\left(c+a\right)}\)

\(=\frac{\left(10a+a\right)+\left(10b+b\right)+ \left(10c+c\right)}{\left(a+a\right)+\left(b+b\right)+\left(c+c\right)}=\frac{11a+11b+11c}{2a+2b+2c}=\frac{11\left(a+b+c\right)}{2\left(a+b+c\right)}=\frac{11}{2}\)

do đó: \(\frac{10a+b}{a+b}=\frac{11}{2}\Rightarrow\left(10a+b\right).2=11.\left(a+b\right)\Rightarrow20a+2b=11a+11b\)

\(\Rightarrow20a-11a=11b-2b\Rightarrow9a=9b\Rightarrow a=b\)

Tương tự với b=c;c=a

=>\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=0^3+0^3+0^3=0\)