K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2017

Có : \(a^2+b^2\le2\) \(\left(1\right)\)

Áp dụng bất đẳng thức AM - GM ta được :

\(a^2+b^2\ge2ab\)

\(\Rightarrow2ab\le a^2+b^{2^{ }}\le2\) \(\left(2\right)\)

Cộng \(\left(1\right)\) \(\)\(\left(2\right)\) :

\(a^2+2ab+b^2\le4\)

\(\Rightarrow\left(a+b\right)^2\le4\)

\(\Rightarrow-2\le a+b\le2\)

18 tháng 6 2023

 Ta có BDT luôn đúng \(\left(a-b\right)^2\ge0\) \(\Leftrightarrow a^2+b^2\ge2ab\) \(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\). Do \(a^2+b^2\le2\) nên \(2\left(a^2+b^2\right)\le4\).

 Do đó \(\left(a+b\right)^2\le4\) \(\Leftrightarrow-2\le a+b\le2\), suy ra đpcm. ĐTXR \(\Leftrightarrow a=b=1\)

7 tháng 4 2018

Áp dụng bất đẳng thức Bunhiacopxki   ta có:

        \(\left(a+b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)\)

\(\Leftrightarrow\)\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow\)\(\left(a+b\right)^2\le2.2=4\)   (do  \(a^2+b^2\le2\))

\(\Leftrightarrow\)\(a+b\le\sqrt{4}=2\)  (đpcm)

p/s: tham khảo ạ. mk ko giám đảm bảo

26 tháng 3 2017

vì avà b2 là 2 SCP nên chúng là STN

thử các trường hợp chỉ có 1 và 1 thỏa mãn => a và b đều = 1

=> a + b < 2(a + b)3 vì 2 < 16 (đpcm)

16 tháng 6 2017

O<=a,b,c<=2

0<=a^2 <=4

0<=b^2 <=4

0<=b^2 <=4

công vào

0<=a^2 +b^2 +c^2 +<= 3.4 =12

23 tháng 1 2018

dự đoán của chúa Pain a=b=c=1

ta có   \(ab^2\le\frac{\left(a+B^2\right)^2}{4}:bc^2\le\frac{\left(b+c^2\right)^2}{4}:ca^2\le\frac{\left(c+a^2\right)^2}{4}.\)

\(ab^2+bc^2+ca^2\le\frac{\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ac+c^2\right)}{4}\)

\(ab^2+bc^2+ca^2\le\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{1}{2}\left(ab+bc+ca\right)\)

ta có  \(xy+yz+zx\le x^2+y^2+z^2\left(cosi\right)\Leftrightarrow ab+bc+ca\le a^2+b^2+c^2=3\)luôn đúng 

thay số ta được \(ab^2+bc^2+ca^2\le\frac{3}{2}+\frac{3}{2}=3\)

\(ab^2+bc^2+ca^2-abc\le3-abc\)

có  \(abc\ge\frac{\left(a+b+c\right)^3}{27}..."-abc"\ge\rightarrow\le\) ( -abc dấu > thành dấu < cùng dấu thay vào được )

\(ab^2+bc^2+ca^2-abc\le3-\frac{\left(a+b+C\right)^3}{27}\)

ta có \(a^2+1\ge2a\left(cosi\right)\)

        \(b^2+1\ge2b\)

       \(c^2+1\ge2c\)

\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)

có (a^2+b^2+c^2)=3 (gt)   \(\Rightarrow3+3\ge2\left(a+b+C\right)\Rightarrow3\ge a+b+C\Rightarrow-3\le-\left(a+b+c\right)\)

cùng dấu < thay vào ta được

\(ab^2+bc^2+ca^2-abc\le3-\frac{\left(3\right)^3}{27}=3-1=2\)

\(\Rightarrow ab^2+bc^2+ca^2-abc\le2\)

cho chúa Pain xin cái tính :)

23 tháng 4 2020

\(\forall\)a,b,c >0,  0<m<1 ta có:

\(\left(a-b\right)^2\le m\left(a-b\right)^2\)

Dấu "=" xảy ra <=> a=b

Áp dụng vào bài toán: a,b,c>0 và a+b+c=1

=> 0<a,b,c<1. Nên: a(a-b)2+b(b-c)2+c(c-a)2 =< (a-b)2+(b-c)2+(c-a)2

=> a(a-b)2+b(b-c)2+c(c-a)2+6(ab+bc+ca) =< 2(a+b+c)2=2

Dấu "=" xảy ra <=> a=b=c=\(\frac{1}{3}\)