Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có BDT luôn đúng \(\left(a-b\right)^2\ge0\) \(\Leftrightarrow a^2+b^2\ge2ab\) \(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\). Do \(a^2+b^2\le2\) nên \(2\left(a^2+b^2\right)\le4\).
Do đó \(\left(a+b\right)^2\le4\) \(\Leftrightarrow-2\le a+b\le2\), suy ra đpcm. ĐTXR \(\Leftrightarrow a=b=1\)
vì a2 và b2 là 2 SCP nên chúng là STN
thử các trường hợp chỉ có 1 và 1 thỏa mãn => a và b đều = 1
=> a + b < 2(a + b)3 vì 2 < 16 (đpcm)
Ta có :
\(a^2+b^2\le2\) ( 1 )
Mặt khác \(2ab\le a^2+b^2\)nên
\(2ab\le a^2+b^2\le2\) ( 2 )
Cộng ( 1 ) với ( 2 ) , \(a^2+b^2+2ab\le4\)\(\Rightarrow\left(a+b\right)^2\le4\)\(\Rightarrow a+b\le2\)
Áp dụng bất đẳng thức Holder, ta có:
\(\left[\left(\sqrt[3]{a}\right)^3+\left(\sqrt[3]{b}\right)^3+1^3\right].\left(1^3+1^3+1^3\right).\left(1^3+1^3+1^3\right)\ge\left(\sqrt[3]{a}.1.1+\sqrt[3]{b}.1.1+1.1.1\right)^3\)
<=>\(\left(a+b+1\right).9\ge\left(\sqrt[3]{a}+\sqrt[3]{b}+1\right)^3\)
Vì a+b=3
=>\(\left(\sqrt[3]{a}+\sqrt[3]{b}+1\right)^3\le27\)
<=>\(\sqrt[3]{a}+\sqrt[3]{b}+1\le3\)
<=>\(\sqrt[3]{a}+\sqrt[3]{b}\le2\)
Dấu "=" xảy ra khi: a=b=1
=>ĐPCM
Có : \(a^2+b^2\le2\) \(\left(1\right)\)
Áp dụng bất đẳng thức AM - GM ta được :
\(a^2+b^2\ge2ab\)
\(\Rightarrow2ab\le a^2+b^{2^{ }}\le2\) \(\left(2\right)\)
Cộng \(\left(1\right)\) và \(\)\(\left(2\right)\) :
\(a^2+2ab+b^2\le4\)
\(\Rightarrow\left(a+b\right)^2\le4\)
\(\Rightarrow-2\le a+b\le2\)
Áp dụng bất đẳng thức Bunhiacopxki ta có:
\(\left(a+b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)\)
\(\Leftrightarrow\)\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow\)\(\left(a+b\right)^2\le2.2=4\) (do \(a^2+b^2\le2\))
\(\Leftrightarrow\)\(a+b\le\sqrt{4}=2\) (đpcm)
p/s: tham khảo ạ. mk ko giám đảm bảo
Áp dụng bất đẳng thức Cauchy ta có :
\(a^2+b^2\ge2\left|ab\right|\)
\(\Rightarrow\left|ab\right|\le1\)
\(\Leftrightarrow-1\le\left|ab\right|\le1\)
Ta có : \(a^2+b^2=\left(a+b\right)^2-2ab\)
\(\Rightarrow\left(a+b\right)^2\le2+2ab\le4\)
\(\Rightarrow a+b\le2\)