\(a^2+b^2+c^2=3\)CMR :

\(ab^2+bc^2+ca^2-abc...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2018

dự đoán của chúa Pain a=b=c=1

ta có   \(ab^2\le\frac{\left(a+B^2\right)^2}{4}:bc^2\le\frac{\left(b+c^2\right)^2}{4}:ca^2\le\frac{\left(c+a^2\right)^2}{4}.\)

\(ab^2+bc^2+ca^2\le\frac{\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ac+c^2\right)}{4}\)

\(ab^2+bc^2+ca^2\le\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{1}{2}\left(ab+bc+ca\right)\)

ta có  \(xy+yz+zx\le x^2+y^2+z^2\left(cosi\right)\Leftrightarrow ab+bc+ca\le a^2+b^2+c^2=3\)luôn đúng 

thay số ta được \(ab^2+bc^2+ca^2\le\frac{3}{2}+\frac{3}{2}=3\)

\(ab^2+bc^2+ca^2-abc\le3-abc\)

có  \(abc\ge\frac{\left(a+b+c\right)^3}{27}..."-abc"\ge\rightarrow\le\) ( -abc dấu > thành dấu < cùng dấu thay vào được )

\(ab^2+bc^2+ca^2-abc\le3-\frac{\left(a+b+C\right)^3}{27}\)

ta có \(a^2+1\ge2a\left(cosi\right)\)

        \(b^2+1\ge2b\)

       \(c^2+1\ge2c\)

\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)

có (a^2+b^2+c^2)=3 (gt)   \(\Rightarrow3+3\ge2\left(a+b+C\right)\Rightarrow3\ge a+b+C\Rightarrow-3\le-\left(a+b+c\right)\)

cùng dấu < thay vào ta được

\(ab^2+bc^2+ca^2-abc\le3-\frac{\left(3\right)^3}{27}=3-1=2\)

\(\Rightarrow ab^2+bc^2+ca^2-abc\le2\)

cho chúa Pain xin cái tính :)

24 tháng 6 2020

Bổ dung thêm \(ab^2+bc^2+ca^2=3\)

Áp dụng BĐT Cauchy ba số:

\(\left(a+7\right)+8+8\ge3\sqrt[3]{\left(a+7\right)8\cdot8}=12\sqrt[3]{a+7}\)

\(\Rightarrow\sqrt[3]{a+7}\le\frac{a+23}{12}\)

Tương tự ta có: \(\hept{\begin{cases}\sqrt[3]{b+7}\le\frac{b+23}{12}\\\sqrt[3]{c+7}\le\frac{c+23}{12}\end{cases}}\)

Cộng các BĐT trên ta nhận được:

\(\sqrt[3]{a+7}+\sqrt[3]{b+7}+\sqrt[3]{c+7}\le\frac{a+b+c+69}{12}\)

Áp dụng BĐT Cauchy 4 số:

\(a\le\frac{a^4+1+1+1}{4}=\frac{a^4+3}{4};b\le\frac{b^4+3}{4};c\le\frac{c^4+3}{4}\)

\(\Rightarrow\frac{a+b+c+69}{12}\le\frac{\frac{a^4+3}{4}+\frac{b^4+3}{4}+\frac{c^4+3}{4}+69}{12}=\frac{a^4+b^4+c^4+285}{48}\)

Ta chứng minh \(\frac{a^4+b^4+c^4+285}{48}\le2\left(a^4+b^4+c^4\right)\)

Áp dụng BĐT Cauchy 4 số: \(\hept{\begin{cases}a^4+b^4+b^4+1\ge4ab\\b^4+c^4+c^4+1\ge4bc^2\\c^4+a^4+a^4+1\ge4ca^2\end{cases}}\)

Cộng các BĐT trên ta thu được \(3\left(a^4+b^4+c^4\right)+3\ge4\left(ab^2+bc^2+ca^2\right)=12\)

\(\Leftrightarrow a^4+b^4+c^4\ge3\)

=> đpcm

11 tháng 8 2020

Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath

Đây nha! Vô tcn xem ảnh!

20 tháng 12 2018

Bài 2:

a) \(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\)

\(A=\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}\)

\(A=\dfrac{1}{abc}\left(a^3+b^3+c^3\right)\)

\(A=\dfrac{1}{abc}\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3\right]\)

\(a+b+c=0\)

Nên a + b = -c (1)

Thay (1) vào A, ta được:

\(A=\dfrac{1}{abc}\left[\left(-c\right)^3-3ab\left(-c\right)+c^3\right]\)

\(A=\dfrac{1}{abc}.3abc\)

\(A=3\)

b) \(B=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)

\(B=\dfrac{a^2}{a^2-\left(b^2+c^2\right)}+\dfrac{b^2}{b^2-\left(c^2+a^2\right)}+\dfrac{c^2}{c^2-\left(a^2+b^2\right)}\)

\(a+b+c=0\)

Nên b + c = -a

=> ( b + c )2 = (-a)2

=> b2 + c2 + 2bc = a2

=> b2 + c2 = a2 - 2bc (1)

Tương tự ta có: c2 + a2 = b2 - 2ac (2)

a2 + b2 = c - 2ab (3)

Thay (1), (2) và (3) vào B, ta được:

\(B=\dfrac{a^2}{a^2-\left(a^2-2bc\right)}+\dfrac{b^2}{b^2-\left(b^2-2ac\right)}+\dfrac{c^2}{c^2-\left(c^2-2ab\right)}\)

\(B=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ac}+\dfrac{c^2}{c^2-c^2+2ab}\)

\(B=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)

\(B=\dfrac{a^3}{2abc}+\dfrac{b^3}{2abc}+\dfrac{c^3}{2abc}\)

\(B=\dfrac{1}{2abc}\left(a^3+b^3+c^3\right)\)

\(a^3+b^3+c^3=3abc\) ( câu a )

\(\Rightarrow B=\dfrac{1}{2abc}.3abc\)

\(\Rightarrow B=\dfrac{3}{2}\)

20 tháng 12 2018

Bài 1:

a) GT: abc = 2

\(M=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)

\(M=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{abc+2cb+2b}\)

\(M=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2+2cb+2b}\)

\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2\left(1+cb+b\right)}\)

\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)

\(M=\dfrac{1+b+bc}{bc+b+1}\)

\(M=1\)

b) GT: abc = 1

\(N=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)

\(N=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{cb}{b\left(ac+c+1\right)}\)

\(N=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{bc}{abc+bc+b}\)

\(N=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)

\(N=\dfrac{1+b+bc}{bc+b+1}\)

\(N=1\)

NV
17 tháng 7 2020

Bài này chính bạn đã hỏi 1 lần luôn:

Câu hỏi của Trần Anh Thơ - Toán lớp 8 | Học trực tuyến

20 tháng 1 2019

Theo đề ra ta có :

 \(ab+bc+ca-\frac{\left(a+b+c\right)^2}{3}=-\left[\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{6}\right]\le0\)

và : \(ab+bc+ca\le3\)

Suy ra : \(\frac{ab}{\sqrt{c^2+3}}\le\frac{ab}{\sqrt{c^2+ab+bc+ca}}=\frac{ab}{\sqrt{\left(c+a\right)\left(b+c\right)}}\)

Áp dụng bất đẳng thức AM - GM ta được :

\(\frac{ab}{\sqrt{c^2+3}}\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{b+c}\right)\)

Thiết lập 2 đẳng thức tương tự, cộng về theo về, ta có :

\(\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ca}{\sqrt{b^2+3}}\le\frac{1}{2}\left[\left(\frac{ab}{c+a}+\frac{bc}{c+a}\right)+\left(\frac{bc}{a+b}+\frac{ca}{a+b}\right)+\left(\frac{ca}{b+c}+\frac{ab}{b+c}\right)\right]\)

và : \(\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ca}{\sqrt{b^2+3}}\le\frac{a+b+c}{2}\)

Mà : \(a+b+c=3\)( theo đề bài ) , suy ra đpcm

20 tháng 1 2019

ở dòng thứ 3 qua dòng thứ 4 bạn sai nhé. đáng lẽ là \(\ge\)