K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2017

*)Min: Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge9\)\(\Rightarrow P\ge3\)

Đẳng thức xảy ra khi \(a=b=c=1\)

*)Max: Không mất tính tổng quát giả sử \(a\ge b\ge c\)

Đặt \(f\left(x\right)=x^2\) là hàm lồi trên \((0;2)\) và thỏa \(a+b+c=3\) nên \((2;1;0) \succ(a,b,c)\)

Áp dụng BĐT Karamata ta có:

\(a^2+b^2+c^2\le2^2+1^2+0^2=5\)

Đẳng thức xảy ra khi \(a=2;b=1;c=0\)

16 tháng 6 2017

O<=a,b,c<=2

0<=a^2 <=4

0<=b^2 <=4

0<=b^2 <=4

công vào

0<=a^2 +b^2 +c^2 +<= 3.4 =12

15 tháng 6 2017

\(0\le a\le2;0\le b\le2;0\le c\le2\Rightarrow\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)\(\Leftrightarrow8-4\left(a+b+c\right)+2\left(ab+bc+ca\right)-abc\ge0\)\(\Leftrightarrow2\left(ab+bc+ca\right)\ge4\left(a+b+c\right)-8+abc\ge4\)\(\Leftrightarrow2\left(ab+bc+ca\right)\ge12-8+abc\ge4\)

\(\Rightarrow\)\(2\left(ab+bc+ca\right)\ge4\)

\(\Leftrightarrow-2\left(ab+bc+ca\right)\le-4\)

Ta có :

\(a+b+c=3\Rightarrow\left(a+b+c\right)^2=9\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^2+b^2+c^2=9-2\left(ab+bc+ca\right)\le9-4=5\Rightarrowđpcm\)Đẳng thức xảy ra khi

\(\left(2-a\right)\left(2-b\right)\left(2-c\right)=0\)

\(\left[{}\begin{matrix}2-a=0\\2-b=0\\2-c=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)

25 tháng 10 2016

\(\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)

\(\Leftrightarrow8-4\left(a+b+c\right)+2\left(ab+bc+ca\right)-abc\ge0\)

\(\Leftrightarrow2\left(ab+bc+ca\right)\ge4\left(a+b+c\right)-8+abc\)

\(\Leftrightarrow2\left(ab+bc+ca\right)\ge12-8+abc\ge4\)

\(\Rightarrow2\left(ab+bc+ca\right)\ge4\)

\(\Rightarrow-2\left(ab+bc+ca\right)\le-4\)

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^2+b^2+c^2=9-2\left(ab+bc+ca\right)\le9-4=5\)(Đpcm)

Dấu = khi \(\hept{\begin{cases}\left(2-a\right)\left(2-b\right)\left(2-c\right)=0\\abc=0\\a+b+c=3\end{cases}}\)

\(\Rightarrow\left(a;b;c\right)=\left(2;1;0\right)\)và hoán vị.

18 tháng 5 2018

a = 2 ( t/m )

b = 1 ( t/m )

c = 0 ( t/m )

vậy \(a^2+b^2+c^2\le5\)