Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{8}\)
\(\Rightarrow\frac{a}{3}=\frac{2b}{10}=\frac{c}{8}\)
Theo tính chất dãy tỉ số bằng nhau :
\(\frac{a}{3}=\frac{2b}{10}=\frac{c}{8}=\frac{a-2b+c}{3-10+8}=\frac{2}{1}=2\)
\(\Rightarrow\frac{a}{3}=2\Rightarrow a=6\)
\(\frac{b}{5}=2\Rightarrow b=10\)
\(\frac{c}{8}=2\Rightarrow c=16\)
Ta có : \(\frac{2y+2z-x}{a}=\frac{2z+2x-y}{b}=\frac{2x+2y-z}{c}\)(sửa lại đề) (1)
=> \(\frac{2y+2z-x}{a}=\frac{4b+4x-2y}{2b}=\frac{4x+4y-2z}{2c}\)
= \(\frac{4z+4x-2y+4x+4y-2z-2y-2z+x}{2b+2c-a}=\frac{9x}{2b+2c-a}\)(dãy tỉ số bằng nhau) (2)
Từ (1) => \(\frac{4y+4z-2x}{2a}=\frac{2z+2x-y}{b}=\frac{4x+4y-2z}{2c}\)
= \(\frac{4x+4y-2z+4y+4z-2x-2z-2x+y}{2c+2a-b}=\frac{9y}{2c+2a-b}\)(dãy tỉ số bằng nhau) (3)
Từ (1) có : \(\frac{4y+4z-2x}{2a}=\frac{4z+4x-2y}{2b}=\frac{2x+2y-z}{c}=\frac{4y+4z-2x+4z+4x-2y-2x-2y+z}{2a+2b-c}\)\(=\frac{9z}{2a+2b-c}\)(dãy tỉ số bằng nhau) (4)
Từ (2) ; (3) ; (4) => điều phải chứng minh
\(\frac{a}{7}=\frac{b}{6}\Rightarrow\frac{a}{35}=\frac{b}{30}=\frac{2b}{60}\) (1)
\(\frac{b}{5}=\frac{c}{8}\Rightarrow\frac{b}{30}=\frac{2b}{60}=\frac{c}{48}\) (2)
Từ (1) và (2) => \(\frac{a}{35}=\frac{2b}{60}=\frac{c}{48}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{35}=\frac{b}{30}=\frac{2b}{60}=\frac{c}{48}=\frac{a-2b+c}{35-60+48}=\frac{46}{23}=2\)
=>a=2.35=70
b=2.30=60
c=2.48=96
Vậy ...
Ta có: \(\frac{a}{7}=\frac{b}{6},\frac{b}{5}=\frac{c}{8}\)\(\) và a-2b+c=46
\(\Rightarrow\frac{a}{35}=\frac{b}{30},\frac{b}{30}=\frac{c}{40}\)và a-2b+c=46
\(\Rightarrow\frac{a}{35}=\frac{b}{30}=\frac{c}{40}\) và a-2b+c=46
áp dụng tính chất của dãy tỉ số nằng nhau
\(\frac{a}{35}=\frac{b}{30}=\frac{c}{40}=\frac{a}{35}-\frac{2b}{70}+\frac{c}{40}=\frac{46}{5}=9.2\)
\(\frac{a}{35}=9.2\Rightarrow a=9.2\cdot35=322\)
\(\frac{2b}{70}=9.2\Rightarrow2b=9.2\cdot70=644\Rightarrow b=322\)
\(\frac{c}{40}=9.2\Rightarrow c=9.2\cdot40=368\)
vậy a=322; b=322; c=368
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=\frac{a-b+c}{2-5+7}=\frac{a+2b-c}{2+2.5-7}\)
hay \(\frac{a-b+c}{2-5+7}=\frac{a+2b-c}{2+10-7}\)
\(\frac{a-b+c}{4}=\frac{a+2b-c}{5}\)
\(\Rightarrow A=\frac{a-b+c}{a+2b-c}=\frac{4}{5}\)
Đặt a/2=b/5=c/7=k
=>a=2k; b=5k; c=7k
\(P=\dfrac{a-b+c}{a+2b-c}=\dfrac{2k-5k+7k}{2k+10k-7k}=\dfrac{4}{5}\)
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a-b+c}{2-5+7}=\dfrac{a+2b-c}{2+10-7}\\ \Rightarrow A=\dfrac{2-5+7}{2+10-7}=\dfrac{4}{5}\)