Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/2 = b/5 = c/7 => a=2/5.b ; c=7/5.y
=> A = 2/5.b-b+7/5.y / 2/5.b+2b-7/5.b
= b.(2/5-1+7/5) / b.(2/5+2-7/5)
= b.4/5 / b.1 = 4/5
Tk mk nha
Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\Rightarrow\hept{\begin{cases}a=2k\\b=5k\\c=7k\end{cases}}\)
Khi đó \(A=\frac{a-b+c}{a+2b-c}=\frac{2k-5k+7k}{2k+10k-7k}=\frac{4k}{5k}=\frac{4}{5}\)
Có a+3b=35−3.0,2=0
⇒a+3b=35−3.0,2=0
⇒ tích trên bằng 0
nhớ tick nhé
|\(x\)| = 1 ⇒ (|\(x\)|)2 = 1 ⇒ \(x^2\) = 1
Thay \(x^2\) = 1 vào biểu thức: M = (\(x^{2^{ }}\) + a)(\(x^2\) + b)(\(x^2\) + c) ta có:
M = (1 + a)(1 + b)(1 + c)
M = (1 + b + a + ab)(1 + c)
M = 1 + b + a + ab + c + bc + ac + abc
M = 1 + ( a + b + c) + (ab + bc + ac) + abc
M = 1 + 2 + (-5) + 3
M = (1+2+3) - 5
M = 1
1,
\(\frac{a}{b}=\frac{5}{7}\)
=> Đặt\(\frac{a}{5}=\frac{b}{7}=k\)
=> a = 5k; b = 7k
Thay vào, ta có:
B = \(\frac{5.5k-7k}{3.5k-2.7k}=\frac{25k-7k}{15k-14k}=\frac{18k}{k}=18\)
2,
M = 3x3y - 8xy2 + ax3y + xy2 - 4xy
M = (3 + a)x3y - 7xy2 - 4xy
Có Bậc của M là 3
=> Bậc của hạng tử lớn nhất là 3
Mà (3 + a)x3y có bậc là 4
=> M có bậc là 4 (trái giả thiết)
=> (3 + a)x3y = 0
=> (3 + a) = 0 hoặc x = 0 hoặc y = 0
+ Nếu x = 0 hoặc y = 0
=> M = 0 không có bậc (KTM)
=> 3 + a = 0
=> a = -3
a: \(A=\left(5xy-2xy+4xy\right)+3x-2y-y^2\)
\(=7xy+3x-2y-y^2\)
b: \(B=\left(\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2-\dfrac{1}{2}ab^2\right)+\left(\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b\right)\)
\(=\dfrac{-7}{8}ab^2+\dfrac{3}{8}a^2b\)
c: \(C=\left(2a^2b+5a^2b\right)+\left(-8b^2-3b^2\right)+\left(5c^2+4c^2\right)\)
\(=7a^2b-11b^2+9c^2\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=\frac{a-b+c}{2-5+7}=\frac{a+2b-c}{2+2.5-7}\)
hay \(\frac{a-b+c}{2-5+7}=\frac{a+2b-c}{2+10-7}\)
\(\frac{a-b+c}{4}=\frac{a+2b-c}{5}\)
\(\Rightarrow A=\frac{a-b+c}{a+2b-c}=\frac{4}{5}\)