Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/2 = b/5 = c/7 => a=2/5.b ; c=7/5.y
=> A = 2/5.b-b+7/5.y / 2/5.b+2b-7/5.b
= b.(2/5-1+7/5) / b.(2/5+2-7/5)
= b.4/5 / b.1 = 4/5
Tk mk nha
Có a+3b=35−3.0,2=0
⇒a+3b=35−3.0,2=0
⇒ tích trên bằng 0
nhớ tick nhé
Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\Rightarrow\hept{\begin{cases}a=2k\\b=5k\\c=7k\end{cases}}\)
Khi đó \(A=\frac{a-b+c}{a+2b-c}=\frac{2k-5k+7k}{2k+10k-7k}=\frac{4k}{5k}=\frac{4}{5}\)
|\(x\)| = 1 ⇒ (|\(x\)|)2 = 1 ⇒ \(x^2\) = 1
Thay \(x^2\) = 1 vào biểu thức: M = (\(x^{2^{ }}\) + a)(\(x^2\) + b)(\(x^2\) + c) ta có:
M = (1 + a)(1 + b)(1 + c)
M = (1 + b + a + ab)(1 + c)
M = 1 + b + a + ab + c + bc + ac + abc
M = 1 + ( a + b + c) + (ab + bc + ac) + abc
M = 1 + 2 + (-5) + 3
M = (1+2+3) - 5
M = 1
Áp dụng tính chất của dãy tỉ số bằng nhau vao A ,ta dc :
A = (2011a - 2010b + 2011b - 2010c + 2011c - 2010d + 2011d - 2010a) / (c + d + a + d + a + b + b + c)
A = (a + b + c + d) / (2a + 2b + 2c + 2d)
Ta có
a/2b = b/2c = c/2d = d/2a = (a + b + c + d) / (2a + 2b + 2c + 2d)
Vay : A = a/2b = b/2c = c/2d = d/2a
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=\frac{a-b+c}{2-5+7}=\frac{a+2b-c}{2+2.5-7}\)
hay \(\frac{a-b+c}{2-5+7}=\frac{a+2b-c}{2+10-7}\)
\(\frac{a-b+c}{4}=\frac{a+2b-c}{5}\)
\(\Rightarrow A=\frac{a-b+c}{a+2b-c}=\frac{4}{5}\)