Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d/Do d qua Q, gọi phương trình d có dạng:
\(a\left(x-2\right)+b\left(y+2\right)=0\Leftrightarrow ax+by-2a+2b=0\) với \(a^2+b^2\ne0\)
d cách C một đoạn bằng 3 nên:
\(d\left(C;d\right)=3\Leftrightarrow\frac{\left|3a+b-2a+2b\right|}{\sqrt{a^2+b^2}}=3\)
\(\Leftrightarrow\left|a+3b\right|=\sqrt{9a^2+9b^2}\)
\(\Leftrightarrow a^2+9b^2+6ab=9a^2+9b^2\)
\(\Leftrightarrow8a^2-6ab=0\Rightarrow\left[{}\begin{matrix}a=0\\4a=3b\end{matrix}\right.\) chọn \(a=3\Rightarrow b=4\)
Có 2 đường thẳng thỏa mãn:
\(\left[{}\begin{matrix}y+2=0\\3x+4y+2=0\end{matrix}\right.\)
c/ Gọi M là trung điểm AB \(\Rightarrow M\left(2;3\right)\)
\(\overrightarrow{AB}=\left(6;2\right)=2\left(3;1\right)\)
Đường thẳng d qua P cách đều AB sẽ có 2 trường hợp xảy ra:
TH1: d qua P và M
\(\overrightarrow{MP}=\left(0;2\right)=2\left(0;1\right)\)
\(\Rightarrow\)Đường thẳng d nhận \(\left(1;0\right)\) là 1 vtpt
Phương trình d:
\(1\left(x-2\right)+0\left(y-5\right)=0\Leftrightarrow x-2=0\)
TH2: d qua P và song song AB
\(\Rightarrow\)d nhận \(\left(1;-3\right)\) là 1 vtpt
Phương trình d:
\(1\left(x-2\right)-3\left(y-5\right)=0\Leftrightarrow x-3y+13=0\)
Pt của d1 dạng tổng quát:
\(2\left(x-1\right)-1\left(y+3\right)=0\Leftrightarrow2x-y-5=0\)
Pt d2 dạng tổng quát:
\(1\left(x-1\right)-2\left(y-1\right)=0\Leftrightarrow x-2y+1=0\)
Tọa độ I là nghiệm: \(\left\{{}\begin{matrix}2x-y-5=0\\x-2y+1=0\end{matrix}\right.\) \(\Rightarrow I\left(\frac{11}{3};\frac{7}{3}\right)\)
b/ d' vuông góc d1 nên nhận \(\left(1;2\right)\) là 1 vtpt và \(\left(2;-1\right)\) là 1 vtcp
Phương trình tổng quát:
\(1\left(x-\frac{11}{3}\right)+2\left(y-\frac{7}{3}\right)=0\Leftrightarrow3x+6y-25=0\)
Pt tham số: \(\left\{{}\begin{matrix}x=\frac{11}{3}+2t\\y=\frac{7}{3}-t\end{matrix}\right.\)
Đề câu sau thiếu
a.
\(\overrightarrow{EF}=\left(1;-1\right)\Rightarrow d_4\) nhận (1;-1) là 1 vtpt
Phương trình \(d_4\) :
\(1\left(x-2\right)-1\left(y+3\right)=0\Leftrightarrow x-y-5=0\)
b.
\(\Delta\) nhận \(\left(2;-1\right)\) là 1 vtcp nên \(d_5\) nhận \(\left(2;-1\right)\) là 1 vtpt
Pt \(d_5\) : \(2\left(x-2\right)-1\left(y+3\right)=0\Leftrightarrow2x-y-7=0\)
c.
\(\Delta\) nhận \(\left(-1;-3\right)\) là 1 vtcp nên \(d_6\) nhận \(\left(3;-1\right)\) là 1 vtpt
Phương trình \(d_6\) :
\(3\left(x-4\right)-1\left(y-6\right)=0\Leftrightarrow3x-y-6=0\)
a: vtpt là (4;3)
Phương trình tổng quát là:
4(x-1)+3(y-2)=0
=>4x-4+3y-6=0
=>4x+3y-10=0
b: Phương trình Δ là:
2(x+2)+3(y-4)=0
=>2x+4+3y-12=0
=>2x+3y-8=0
c: Gọi (d): y=ax+b là phương trình cần tìm
Theo đề, ta có:
\(\left\{{}\begin{matrix}-2a+b=1\\3a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{5}\\b=\dfrac{7}{5}\end{matrix}\right.\)
d: Vì (d1)//(d) nên (d1): 3x-5y+c=0
Thay x=4 và y=-2 vào (d1), ta được:
c+3*4-5*(-2)=0
=>c=-22
f: (d): 2x-7y-1=0
=>Δ: 7x+2y+c=0
Thay x=3 và y=5 vào Δ, ta được:
c+21+10=0
=>c=-31
1: (d): x=-2-2t và y=1+2t nên (d) có VTCP là (-2;2)=(-1;1) và đi qua B(-2;1)
=>(d') có VTPT là (-1;1)
Phương trình (d') là;
-1(x-3)+1(y-1)=0
=>-x+3+y-1=0
=>-x+y+2=0
2: (d) có VTCP là (-1;1)
=>VTPT là (1;1)
Phương trình (d) là:
1(x+2)+1(y-1)=0
=>x+y+1=0
Tọa độ H là;
x+y+1=0 và -x+y+2=0
=>x=1/2 và y=-3/2
Đường thẳng \(\Delta_1\) có vec tơ pháp tuyến \(\overrightarrow{n_1}=\left(3;4\right)\)
Đường thẳng \(\Delta_2\) có vec tơ pháp tuyến \(\overrightarrow{n_2}=\left(4;-3\right)\)
Do \(\overrightarrow{n_1}.\overrightarrow{n_2}=3.4+4.\left(-3\right)=0\) nên \(\Delta_1\perp\Delta_2\)
Do đó nếu đường thẳng d tạo với \(\Delta_1,\Delta_2\) một tam giác cân, thì đó là tam giác vuông cân, tại đỉnh là giao điểm của \(\Delta_1;\Delta_2\)
Bài toán quy về viết phương trình đường thẳng d đi qua điểm M(1;1) và tạo với đường thẳng \(\Delta_1\) một góc \(\frac{\pi}{4}\).
Giả sử đường thẳng d có vec tơ pháp tuyến \(\overrightarrow{m}=\left(a;b\right)\) với \(a^2+b^2\ne0\), khi đó d có phương trình dạng :
\(ax+by-a-b=0\)
Do góc \(\left(d;\Delta_1\right)=\frac{\pi}{4}\) nên
\(\frac{\left|3a+4b\right|}{5\sqrt{a^2+b^2}}=\frac{1}{\sqrt{2}}\Leftrightarrow7a^2-48ab-7b^2=0\)
\(\Leftrightarrow\begin{cases}a=7b\\7a=-b\end{cases}\)
Nếu a=7b, chọn b=1, a=7, ta được đường thẳng d : \(7x+y-8=0\)
Nếu 7a=-b, chọn a=1, b=-7 ta được đường thẳng d : \(x-7y+6=0\)