Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1: Gọi 2 số chính phương liên tiếp là a\(^2\) và (a+1)\(^2\)( vs a\(\in\) N )
CM :S=a\(^2\) +(a+1)\(^2\)+a\(^2\).(a+1)\(^2\) là số chính phương
Thật vậy : S= a\(^2\) +(a+1)\(^2\)+a\(^2\).(a+2a+1)
= a\(^2\)+a\(^2\)+2a+1+a\(^4\)+2a\(^3\)+a\(^2\)
= (a\(^2\))\(^2\)+a\(^2\)+1\(^2\)+2.a\(^2\).a+a+2a\(^2\).1+2a.1
= (a\(^2\)+a+1)\(^2\) là số chính phương (đpcm)
Câu hỏi của lekhanhhung - Toán lớp 7 - Học toán với OnlineMath
Chứng minh tích chia hết cho 121 , mà 121 là 1 số chính phương
=> T có ít nhất 1 số chính phương.
Ta có :
\(\frac{n\left(n+1\right)}{2}+\frac{\left(n+1\right)\left(n+2\right)}{2}\)
\(=\frac{n\left(n+1\right)+\left(n+1\right)\left(n+2\right)}{2}\)
\(=\frac{\left(n+1\right)\left(n+n+2\right)}{2}\)
\(=\frac{\left(n+1\right)\cdot2\cdot\left(n+1\right)}{2}\)
\(=\left(n+1\right)^2\)
=> ĐPCM