Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 :
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)
\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)
\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)
\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)
.....
\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)
\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
\(B=\dfrac{\sqrt{6+2\left(\sqrt{6}+\sqrt{3}+\sqrt{2}\right)}-\sqrt{6-2\left(\sqrt{6}-\sqrt{3}+\sqrt{2}\right)}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{6+2\sqrt{6}+2\sqrt{3}+2\sqrt{2}}-\sqrt{6-2\sqrt{6}+2\sqrt{3}-2\sqrt{2}}}{\sqrt{2}}\)
\(=\dfrac{\left(\sqrt{6+2\sqrt{6}+2\sqrt{3}+2\sqrt{2}}-\sqrt{6-2\sqrt{6}+2\sqrt{3}-2\sqrt{2}}\right)\sqrt{2}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(6+2\sqrt{6}+2\sqrt{3}+2\sqrt{2}\right)\cdot2}-\sqrt{\left(6-2\sqrt{6}+2\sqrt{3}-2\sqrt{2}\right)\cdot2}}{2}\)
\(=\dfrac{\sqrt{12+4\sqrt{6}+4\sqrt{3}+4\sqrt{2}}-\sqrt{12-4\sqrt{6}+4\sqrt{3}-4\sqrt{2}}}{2}\)
\(=\dfrac{4}{2}\)
\(=2\)
\(C=\dfrac{\sqrt{9-6\sqrt{2}}-\sqrt{6}}{\sqrt{3}}\)
\(=\dfrac{\left(\sqrt{9-6\sqrt{2}}-\sqrt{6}\right)\sqrt{3}}{3}\)
\(=\dfrac{\sqrt{\left(9-6\sqrt{2}\right)\cdot3}-3\sqrt{2}}{3}\)
\(=\dfrac{\sqrt{27-18\sqrt{2}}-3\sqrt{2}}{3}\)
\(=\dfrac{\sqrt{\left(3-3\sqrt{2}\right)^2}-3\sqrt{2}}{3}\)
\(=\dfrac{3\sqrt{2}-3-3\sqrt{2}}{3}\)
\(=\dfrac{-3}{3}\)
\(=-1\)
Lời giải:
Đặt \(\frac{\sqrt{ab}-1}{3}=\frac{\sqrt{bc}-3}{9}=\frac{\sqrt{ca}-5}{-6}=t\)
\(\Rightarrow \left\{\begin{matrix} \sqrt{ab}=3t+1\\ \sqrt{bc}=9t+3\\ \sqrt{ca}=5-6t\end{matrix}\right.\)
\(\Rightarrow \sqrt{ab}+\sqrt{bc}+\sqrt{ca}=6t+9\)
\(\Leftrightarrow 11=6t+9\Leftrightarrow t=\frac{1}{3}\)
Khi đó : \(\left\{\begin{matrix} \sqrt{ab}=2\\ \sqrt{bc}=6\\ \sqrt{ac}=3\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} ab=4\\ bc=36\\ ac=9\end{matrix}\right.\Rightarrow abc=\sqrt{4.36.9}=36\)
\(\Rightarrow \left\{\begin{matrix} c=\frac{abc}{ab}=9\\ a=\frac{abc}{bc}=1\\ b=\frac{abc}{ac}=4\end{matrix}\right.\)
Vậy....
\(\frac{\sqrt{ab}-1}{3}=\frac{\sqrt{bc}-3}{9}=\frac{\sqrt{ac}-5}{-6}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}-9}{6}=\frac{1}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{\sqrt{ab}-1}{3}=\frac{1}{3}\\\frac{\sqrt{bc}-3}{9}=\frac{1}{3}\\\frac{\sqrt{ac}-5}{-6}=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\sqrt{ab}=2\\\sqrt{bc}=6\\\sqrt{ac}=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}ab=4\\bc=36\\ac=9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}c=9a\\ac=9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=4\\c=9\end{matrix}\right.\)
ta có A= 2,984426344
=>A<3
bạn Jr Neymar ,cái này k đc tính ra , phải kiếm cách lm s để chứng minh nhưng k đc dùng máy tính