Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a+b+c=1 nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{a}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)=2+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\)
Do đó
\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\left(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{ab}\right)+\left(\frac{bc}{b^2+c^2}+\frac{b^2+c^2}{bc}\right)+\left(\frac{ca}{a^2+c^2}+\frac{c^2+a^2}{ca}\right)+\frac{3}{4}\)
\(\ge2\sqrt{\frac{ab}{a^2+b^2}\cdot\frac{a^2+b^2}{ab}}+2\sqrt{\frac{bc}{c^2+b^2}\cdot\frac{c^2+b^2}{bc}}+2\sqrt{\frac{ca}{a^2+c^2}+\frac{c^2+a^2}{ca}}+\frac{3}{4}\)
\(=2\cdot\frac{1}{2}+2\cdot\frac{1}{2}+\frac{2}{3}=\frac{15}{4}\)
Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{3}\)
\(\dfrac{9}{4}=ab+a+b+1\le\dfrac{1}{4}\left(a+b\right)^2+a+b+1\)
\(\Leftrightarrow\left(a+b\right)^2+4\left(a+b\right)-5\ge0\)
\(\Leftrightarrow\left(a+b-1\right)\left(a+b+5\right)\ge0\)
\(\Leftrightarrow a+b-1\ge0\) (do \(a+b+5>0\))
\(\Rightarrow a+b\ge1\)
b.
\(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\ge\dfrac{1}{2}.1^2=\dfrac{1}{2}\) (đpcm)
Áp dụng bđt AM - GM cho a,b,c thực dương :
\(\left\{{}\begin{matrix}\dfrac{ab}{c}+\dfrac{bc}{a}\ge2\sqrt{b^2}=2b\\\dfrac{bc}{a}+\dfrac{ac}{b}\ge2c\\\dfrac{ab}{c}+\dfrac{ac}{b}\ge2a\end{matrix}\right.\)
\(\Leftrightarrow2.\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\right)\ge\left(a+b+c\right)\)
Dấu "=" ⇔ a = b =c
Thôi chắc mình tự trả lời cho mn tham khảo quá.
Áp dụng BĐT Cauchy dạng :\(\frac{x+y}{2}\ge\sqrt{x+y}\Leftrightarrow x+y\ge2\sqrt{xy}\)
Dấu "=" xảy ra khi : x = y
Ta có :
\(ab+\frac{a}{b}\ge2.\sqrt{ab.\frac{a}{b}}=2\sqrt{a^2}=2a\)
Tương tự : \(\frac{a}{b}+\frac{b}{a}\ge2\)
\(ab+\frac{b}{a}\ge2b\)
Cộng vế với vế ta được :
\(2\left(ab+\frac{a}{b}+\frac{b}{a}\right)\ge2\left(a+b+1\right)\)
\(\Leftrightarrow ab+\frac{a}{b}+\frac{b}{a}\ge a+b+1\left(đpcm\right)\)
áp dụng bất đẳng thức buinhia
\(\left(a+b+c\right)^2\ge\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\)
\(\Leftrightarrow\left(\frac{3}{2}\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\frac{3}{4}\le a^2+b^2+c^2\)
Ta có : \(\left(a^2-\frac{1}{2}\right)^2\ge0\Leftrightarrow a^2-a+\frac{1}{4}\ge0\Leftrightarrow a^2+\frac{1}{4}\ge a\)
Tương tự : \(b^2+\frac{1}{4}\ge b\) và \(c^2+\frac{1}{4}\ge c\)
Cộng vế theo vế ta được : \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\Leftrightarrow a^2+b^2+c^2+\frac{3}{4}\ge\frac{3}{2}\Rightarrow a^2+b^2+c^2\ge\frac{3}{4}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
Câu hỏi của Đoàn Thanh Kim Kim - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo ở link này nhé :)
Do a,b,c là độ dài các cạnh của tam giác nên luôn dương.
Do đó: \(VP>0\)
Nhân 2 vào mỗi vễ,điều cần c/m tương đương với:
\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)(Chuyển vế)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng) (đpcm)
Dấu "=" xảy ra khi a = b = c
\(a^2+\frac{b^2}{4}\ge ab\)
\(\Leftrightarrow4a^2+b^2\ge4ab\)
\(\Leftrightarrow4a^2-4ab+b^2\ge0\)
\(\Leftrightarrow\left(2a-b\right)^2\ge0\)(lôn đúng )
vậy BĐT ĐƯỢC C/M
\(a^2+\frac{b^2}{4}\ge ab\)
\(\Leftrightarrow4a^2+b^2\ge4ab\)
\(\Leftrightarrow4a^2-4a+b^2\ge0\)
\(\Leftrightarrow\left(2a-b\right)^2\ge0\)( \(Bđt\)\(này\)\(luôn\)\(đúng\))
\(Vậy\) \(a^2+\frac{b^2}{4}\ge ab\)(dấu bằng xảy ra khi \(2a=b\))