K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2021

Áp dụng bđt AM - GM  cho a,b,c thực dương :

\(\left\{{}\begin{matrix}\dfrac{ab}{c}+\dfrac{bc}{a}\ge2\sqrt{b^2}=2b\\\dfrac{bc}{a}+\dfrac{ac}{b}\ge2c\\\dfrac{ab}{c}+\dfrac{ac}{b}\ge2a\end{matrix}\right.\)

\(\Leftrightarrow2.\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\right)\ge\left(a+b+c\right)\)

Dấu "=" ⇔ a = b =c 

5 tháng 5 2021

có cách lớp 8 ko ạ

 

5 tháng 5 2021

Áp dụng bất đẳng thức AM-GM ta có :

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab^2c}{ac}}=2\left|b\right|=2b\)( vì b > 0 )

Tương tự : \(\frac{bc}{a}+\frac{ca}{b}\ge2c\)\(\frac{ab}{c}+\frac{ca}{b}\ge2a\)

Cộng vế với vế các bđt trên rồi rút gọn ta có đpcm

Dấu "=" xảy ra <=> a = b = c 

5 tháng 5 2021

Giả sử ta phải chứng minh:  \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\left(a,b,c>0\right)\).

\(\Leftrightarrow\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)^2\ge\left(a+b+c\right)^2\).

\(\Leftrightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+\frac{2ab.bc}{ac}+\frac{2bc.ca}{ab}+\frac{2ca.ab}{cb}\ge\)\(a^2+b^2+c^2+2ab+2bc+2ca\).

\(\Leftrightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+2b^2+2c^2+2a^2-a^2-b^2-c^2\ge\)\(2ab+2bc+2ca\).

\(\Leftrightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+a^2+b^2+c^2\ge2ab+2bc+2ca\left(1\right)\).

Vì \(a,b,c>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(\frac{a^2b^2}{c^2}+c^2\ge2\sqrt{\frac{a^2b^2}{c^2}.c^2}=2ab\left(2\right)\).

Chứng minh tương tự, ta được:

\(\frac{b^2c^2}{a^2}+a^2\ge2bc\left(a,b,c>0\right)\left(2\right)\).

Chứng minh tương tự, ta được:

\(\frac{c^2a^2}{b^2}+b^2\ge2ca\left(4\right)\).

Từ \(\left(2\right),\left(3\right),\left(4\right)\), ta được:

\(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+a^2+b^2+c^2\ge2ab+2bc+2ca\).

Do đó bất đẳng thức đã được chứng minh.

Dấu bằng xảy ra \(\Leftrightarrow a=b=c>0\).

Vậy \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)với \(a,b,c>0\).

6 tháng 10 2019

ta có a+bc=a(a+b+c)+ab=(a+b)(a+c)

tương tự b+ca=(b+c)(a+b)

c+ab=(a+c)(b+c)

ad bđt cô si cho 3 số dương ta có

a^3/(a+b)(a+c)+a+b/8+a+c/8 >=3a/4

tương tự bạn lm tiếp nhé

12 tháng 8 2017

Bài 1 với bài 2 như nhau, đăng làm gì cho tốn công :))

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)

\(\frac{ab}{c}+\frac{ca}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ca}{b}}=2a\)

\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)

Cộng vế với vế ta được :

\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)(đpcm)

2 tháng 12 2017

\(\sqrt[4]{b^3}\)

3 tháng 5 2020

Vì a+b+c=1 nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{a}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)=2+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\)

Do đó

\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\left(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{ab}\right)+\left(\frac{bc}{b^2+c^2}+\frac{b^2+c^2}{bc}\right)+\left(\frac{ca}{a^2+c^2}+\frac{c^2+a^2}{ca}\right)+\frac{3}{4}\)

\(\ge2\sqrt{\frac{ab}{a^2+b^2}\cdot\frac{a^2+b^2}{ab}}+2\sqrt{\frac{bc}{c^2+b^2}\cdot\frac{c^2+b^2}{bc}}+2\sqrt{\frac{ca}{a^2+c^2}+\frac{c^2+a^2}{ca}}+\frac{3}{4}\)

\(=2\cdot\frac{1}{2}+2\cdot\frac{1}{2}+\frac{2}{3}=\frac{15}{4}\)

Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{3}\)

2 tháng 7 2019

#)Giải :

Ta có : 

\(\hept{\begin{cases}\frac{ab}{b+c+a+b}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\\\frac{bc}{a+b+a+c}\le\frac{bc}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\\\frac{ac}{b+c+a+b}\le\frac{ac}{4}\left(\frac{1}{b+c}+\frac{1}{a+b}\right)\end{cases}}\)

\(\Rightarrow VT\le\frac{1}{a+b}.\left(\frac{bc}{4}+\frac{ac}{4}\right)+\frac{1}{a+c}.\left(\frac{bc}{4}+\frac{ab}{4}\right)+\frac{1}{b+c}.\left(\frac{ac}{4}+\frac{ab}{4}\right)\)

\(=\frac{1}{a+b}.\frac{c\left(a+b\right)}{4}+\frac{1}{a+c}.\frac{b\left(a+c\right)}{4}+\frac{1}{b+c}.\frac{a\left(b+c\right)}{4}\)

\(=\frac{c}{4}+\frac{b}{4}+\frac{a}{4}\)

\(\Rightarrow\frac{a+b+c}{4}\)

\(\Rightarrowđpcm\)

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)

6 tháng 7 2017

a, b, c dương

Ta có  \(\frac{a^3}{b}+ab\ge2\sqrt{\frac{a^3}{b}.ab}=2\sqrt{a^4}=2a^2\)   (1)

Tương tự  \(\frac{b^3}{c}+bc\ge2b^2\)  (2) và  \(\frac{c^3}{a}+ca\ge2c^2\)   (3)

Cộng (1), (2), (3) vế theo vế:  \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\)

\(\ge2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)=ab+bc+ca\)

Đẳng thức xảy ra tại a=b=c

22 tháng 11 2017

Áp dụng bđt AM - GM ta có :

\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ca}{b}}=2\sqrt{c^2}=2c\)

\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2\sqrt{b^2}=2b\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}.\frac{ab}{c}}=2\sqrt{a^2}=2a\)

Cộng vế với vế ta được :

\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)(đpcm)