Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M\ge\frac{\left(1+1+1+1\right)^2}{3\left(a+b+c+d\right)}=\frac{16}{3\left(a+b+c+d\right)}\) ( bdt Cauchy dạng Engel)
Mặt khác, có \(\left(a+b+c+d\right)^2\le4\left(a^2+b^2+c^2+d^2\right)\le16\) ( bdt Bunykovski)
\(\Leftrightarrow a+b+c+d\le4\)
\(\Rightarrow M\ge\frac{16}{3\left(a+b+c+d\right)}\ge\frac{16}{12}=\frac{4}{3}\)
Dấu "=" : x =y =z = 1
\(Q\le\sqrt{3\left(2a+2b+2c+ab+bc+ca\right)}\)
\(Q\le\sqrt{3\left(4+\frac{\left(a+b+c\right)^2}{3}\right)}=4\)
\(Q_{max}=4\) khi \(a=b=c=\frac{2}{3}\)
\(A=4x^2+4x+11=4x^2+4x+1+10\\ A=\left(2x+1\right)^2+10\ge10\)
đẳng thức xảy ra khi 2x+1=0 => x=-0,5
vậy MIN A=10 tại x=-0,5
\(B=4x-x^2-3=-\left(x^2-4x+4\right)+1\\ =-\left(x-2\right)^2+1\le1\)
dấu "=" xảy ra khi x-2=0 => x=2
vậy MAX B=1 tại x=2
Áp dụng bđt cô si ta có:
\(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\ge2ab+2b+2=2\left(ab+b+1\right)\)
\(b^2+2c^2+3\ge2\left(bc+c+1\right)\)
\(c^2+2a^2+3\ge2\left(ac+a+1\right)\)
=> \(M\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{bcab+abc+ab}+\frac{b}{abc+ab+b}\right)\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{b+1+ab}+\frac{b}{1+ab+b}\right)\)
\(=\frac{1}{2}.\frac{ab+b+1}{ab+b+1}=\frac{1}{2}\)
Bổ sung:
Dấu "=" xảy ra <=> a = b = c = 1
Vậy GTLN của M = 1/2 tại a = b = c = 1.
Câu 1/ Ta có: 2n + 1 = a2 ; 3n + 1 = b2
=> 4(2n + 1) - (3n + 1) = 4a2 - b2
<=> 5n + 3 = (2a - b)(2a + b)
Ta thấy 2a + b > 1
Giờ chỉ việc chứng minh
2a - b = 1 (vô nghiệm là có thể kết luận rồi nhé )
Theo đề ra, ta có:
\(a^2+b^2+c^2\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(=a^3+b^3+c^3+a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)
Theo BĐT Cô-si:
\(\left\{{}\begin{matrix}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\)
Do vậy \(M\ge14\left(a^2+b^2+c^2\right)+\dfrac{3\left(ab+bc+ac\right)}{a^2+b^2+c^2}\)
Ta đặt \(a^2+b^2+c^2=k\)
Luôn có \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=1\)
Vì thế nên \(k\ge\dfrac{1}{3}\)
Khi đấy:
\(M\ge14k+\dfrac{3\left(1-k\right)}{2k}=\dfrac{k}{2}+\dfrac{27k}{2}+\dfrac{3}{2k}-\dfrac{3}{2}\ge\dfrac{1}{3}.\dfrac{1}{2}+2\sqrt{\dfrac{27k}{2}.\dfrac{3}{2k}}-\dfrac{3}{2}=\dfrac{23}{3}\)
\(\Rightarrow Min_M=\dfrac{23}{3}\Leftrightarrow a=b=c=\dfrac{1}{3}\).