K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

\(\left\{{}\begin{matrix}a>b\\b>2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a>2\\b>2\end{matrix}\right.\)

Nên \(\left\{{}\begin{matrix}a=2+m\\b=2+n\end{matrix}\right.\)

Khi đó:

\(\left\{{}\begin{matrix}ab=\left(2+m\right)\left(2+n\right)\\a+b=2+m+2+n\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ab=4+2n+2m+mn\\a+b=4+m+n\end{matrix}\right.\)

Dễ thấy: \(4+2\left(m+n\right)+mn>4+m+n\)

Nên ta có đpcm

9 tháng 4 2022

a+b = a.b = a/b

Cho a/b = a-1

=> a+b = a-1 = a.b = a/b

=> a+(-1) = a+b = a.b = a/b

=> b = -1

a-1 = a.b = a/b

Chúc bạn học tốt!!!

Tick cho mình nha haha

9 tháng 4 2022

ủa bạn ơi tại sao b = -1 thì a-1 = a.b = a/b

2 tháng 8 2015

Vì a>2=>a=2+m, b>2=>b=2+n (m,n thuộc N*)

=>a.b=(2+m).(2+n)=2.(2+n)+m.(2+n)=4+2n+2m+mn=4+m+m+n+n+mn=(4+m+n)+(m+n+mn)=(2+m)+(2+n)+(m+n+mn)>(2+m)+(2+m)=a.b

=>ĐPCM

16 tháng 7 2015

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt;c=dt\)

Thay vào từng vế ta có 

     \(\frac{a.b}{c.d}=\frac{bt.b}{dt.d}=\frac{b^2.t}{d^2.t}=\frac{b^2}{d^2}\) (1)

     \(\frac{\left(bt+b\right)^2}{\left(dt+d\right)^2}=\frac{b^2\left(t+1\right)^2}{d^2\left(t+1\right)^2}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) => ĐPCM

23 tháng 9 2017

a/b=c/d 
=> a/c = b/d
Áp dụng tính chất dãy tỉ số bằng nhau có : 
a/c = b/d = a+b/c+d
=> (a/c)mũ 2 = (b/d)mũ 2 = a/c.b/d= ( a+b/c+d ) mũ 2 
=>   a/c.b/d= ( a+b/c+d ) mũ 2 
=> a.b/c.d = (a+b)mũ 2 / (c + d ) mũ 2 
=> dpcm

\(ab=c\cdot c\)

nên a/c=c/b

Đặt a/c=c/b=k

=>a=ck; c=bk

\(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{c^2k^2+c^2}{b^2+b^2k^2}=\dfrac{c^2}{b^2}=k^2\)

\(\dfrac{a}{b}=\dfrac{ck}{\dfrac{c}{k}}=ck\cdot\dfrac{k}{c}=k^2\)

Do đó: \(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\)

28 tháng 8 2017

đề bài sai bn oi

28 tháng 8 2017

sai ở đâu

19 tháng 10 2021

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\\ \dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\dfrac{b^2}{d^2}\\ \Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)