K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2018

\(A=3+3^2+3^3+.....+3^{2006}\)

\(\Leftrightarrow3A=3^2+3^3+3^4+.......+3^{2007}\)

\(\Leftrightarrow3A-A=\left(3^2+3^3+.......+3^{2007}\right)-\left(3+3^2+......+3^{2006}\right)\)

\(\Leftrightarrow2A=3^{2007}-3\)

\(\Leftrightarrow2A+3=3^{2007}\)

\(2A+3=3^x\)

\(\Leftrightarrow3^{2007}=3^x\)

\(\Leftrightarrow x=2007\)

Vậy....

20 tháng 7 2021

A=3+32+33+...+3100

3A=32+33+...+3101

3A-A=(32+33+...+3101)-(3+32+33+...+3100)

2A=3101-3

2A+3=3101

20 tháng 7 2021

\(A=3+3^2+3^3+...+3^{100}\) 

\(\Rightarrow3A=3.\left(3+3^2+3^3+...+3^{100}\right)\) 

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\) 

\(\Rightarrow3A-A=2A=\left[3^2+3^3+3^4+...+3^{101}\right]-\left[3+3^2+3^3+...+3^{100}\right]\)\(\Rightarrow2A=3^{101}-3\) 

Theo đề bài ta có  2A + 3 = 3n ( \(n\in N\) )

\(\Rightarrow2A+3=3^{101}-3+3=3^n\) 

\(\Rightarrow2A+3=3^{101}=3^n\)  

\(\Rightarrow3^{101}=3^n\) 

\(\Rightarrow101=n\) ( thỏa mãn điều kiện \(n\in N\)

Vậy n = 101 

 

26 tháng 5 2018

Đáp án cần chọn là: C

24 tháng 12 2021

C bạn nhé n bằng  101

22 tháng 11 2018

Ta có:  A = 3 + 3 2 + 3 3 + . . . + 3 100

=>  3 A = 3 2 + 3 3 + 3 4 + . . . + 3 101

=>  3 A - A = ( 3 2 + 3 3 + 3 4 + . . . + 3 101 ) - ( 3 + 3 2 + 3 3 + . . . + 3 100 )

=>  2 A = 3 2 + 3 3 + 3 4 + . . . + 3 101 - 3 - 3 2 - 3 3 - . . . - 3 100

2 A = 3 101 - 3 <=>  2 A + 3 = 3 101 , mà  2 A + 3 = 3 n

=> n = 101

13 tháng 8 2021

A=3+32+33+...+399

3A=32+33+...+3100

3A-A=(32+33+...+3100)-(3+32+33+...+399)

2A=3100-3

2A+3=3100

⇒n=100

13 tháng 8 2021

Đây nè bạn, chúc bạn học tốt :))
A = 3 + 3+ 33+ ... + 399
3A = 3. (3 + 3+ 33+ ... + 399)
3A \(=3^2+3^3+3^4+...+3^{100}\)
3A \(=\left(3^2+3^3+3^4+...+3^{100}\right)-\left(3+3^2+3^3+...+3^{99}\right)\)
2A\(=3^{100}-3\)
Vậy, sau khi tìm đc 2A, ta tìm stn n nha:
2A + 3 = 3n
\(=3^{100}-3+3=3^n\)
\(3^{100}=3^n\)(Vì -3 +3 = 0)
Vậy n = 100

18 tháng 11 2021

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2021}\\ \Rightarrow3A-A=3^2+3^3+...+3^{2021}-3-3^2-3^3-...-3^{2020}\\ \Rightarrow2A=3^{2021}-3\\ \Rightarrow2A+3=3^{2021}=3^x\\ \Rightarrow x=2021\)

22 tháng 6 2017

a, A =   3 + 3 2 + 3 3 + . . . + 3 12 => 3A =  3 2 + 3 3 + . . . + 3 13

=> 3A - A = ( 3 2 + 3 3 + . . . + 3 13 ) - ( 3 + 3 2 + 3 3 + . . . + 3 12 )

=> 2A =  3 13 - 3 => A =  3 13 - 3 2

Vì A =  3 x - 3 2 => x = 13 => x+2016 = 2029

b, Số tập hợp con của tập A có x phần tử là  2 x

=>  2 x = 64 =  2 6 => x = 6. Vậy tập A có 6 phần tử

a: Tổng các số hạng là:

\(\dfrac{\left(220+1\right)\cdot220}{2}=24310\)

Ta có: A+1=2x

\(\Leftrightarrow2x=24311\)

hay \(x=\dfrac{24311}{2}\)

18 tháng 6 2018

a,

A = 1 + 3 + 32 + 33 + ... + 3119 

3A = 3.(1 + 3 + 32 + 33 + ... + 3119

3A = 3 + 32 + 33 + 34+ ... + 3120

2A = 3A - A = (3 + 32 + 33 + 34 + ... + 3120) - (1 + 3 + 32 + 33 + ... + 3119

2A = 3120 - 1 

A = \(\frac{3^{120}-1}{2}\)

Vậy A = \(\frac{3^{120}-1}{2}\)

b, Ta có : 3120 - 1 + 1 = 27x 

<=> 3120 = 27x 

<=> 3120 = (33)x 

<=> 3120 = 3x 

<=> x = 120 

Vậy x = 120 

c, A có chia hết cho 5 và 13 

19 tháng 6 2018

Sua cho \(\left(3^3\right)^x=3^{3x}\) nha 

\(\Rightarrow3^{120}=3^{3x}\Rightarrow x=\frac{120}{3}=40\)

6 tháng 8 2016

3/2+5/4+9/8/+17/16+33/32-6+x-1/x+1=31/32-2/2015

=(1+1/2)+(1+1/4)+(1+1/8)+(1+1/16)+(1+1/32-6+x-1/x+1=31/32-2/2015

=(1/2+1/4+1/8+1/16+1/32)+(1+1+1+1+1)-6+x-1/x+1=31/32-2/2015

=31/32+5-6+x-1/x+1=31/32-2/2015

=5-6+x-1/x+1=31/32-2/2015-31/32

=-1+x-1/x+1=-2/2015

=x-1/x+1=-2/2015- -1

=x-1/x+1=2013/2015

=>x=2014

24 tháng 12 2022

a,       A = 1 + 3 + 32 +  33 +....+32022

     3A   =      3  + 32  + 33 +.....+32022 + 32023

3A - A  =     32023 - 1

      2A =     32023 - 1

2A - 22023 = 32023 - 1 - 22023 

2A - 22023 = -1 

b, x \(\in\) Z và x + 10 \(⋮\) x - 1 ( đk x# 1)

                      x + 10 \(⋮\) x - 1 

            \(\Leftrightarrow\) x - 1 + 11 \(⋮\) x - 1

                            11 \(⋮\) x - 1

                    x-1 \(\in\) { -11; -1; 1; 11}

                    x     \(\in\) { -10; 0; 2; 12}

Kết luận các số nguyên x thỏa mãn yêu cầu đề bài là :

                   x   \(\in\) { -10; 0; 2; 12}