K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2020

a) A = 3 + 32 + 33 +  ... + 32006

=> 3A = 32 + 33 + 34 + ... + 32007

Lấy 3A trừ A theo vế ta có : 

3A - A = (32 + 33 + 34 + ... + 32007) - (3 + 32 + 33 +  ... + 32006)

=> 2A = 32007 - 3 

=> A = (32007 - 3) : 2

b) Sửa đề : 2A + 3 = 3x

=> 32007 - 3 + 3 = 3x

=> 3x = 32007

=> x = 2007

14 tháng 8 2023

1.

a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(2A=2+2^2+2^3+....+2^{2008}\)

b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)

\(=2^{2008}-1\) (bạn xem lại đề)

 

2.

\(A=1+3+3^1+3^2+...+3^7\)

a. \(2A=2+2.3+2.3^2+...+2.3^7\)

b.\(3A=3+3^2+3^3+...+3^8\)

\(2A=3^8-1\)

\(=>A=\dfrac{2^8-1}{2}\)

 

3

.\(B=1+3+3^2+..+3^{2006}\)

a. \(3B=3+3^2+3^3+...+3^{2007}\)

b. \(3B-B=2^{2007}-1\)

\(B=\dfrac{2^{2007}-1}{2}\)

 

4.

Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)

a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)

b.\(4C-C=4^7-1\)

\(C=\dfrac{4^7-1}{3}\)

 

5.

\(S=1+2+2^2+2^3+...+2^{2017}\)

\(2S=2+2^2+2^3+2^4+...+2^{2018}\)

\(S=2^{2018}-1\)

4:

a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6

=>4*C=4+4^2+...+4^7

b: 4*C=4+4^2+...+4^7

C=1+4+...+4^6

=>3C=4^7-1

=>\(C=\dfrac{4^7-1}{3}\)

5:

2S=2+2^2+2^3+...+2^2018

=>2S-S=2^2018-1

=>S=2^2018-1

24 tháng 12 2022

a,       A = 1 + 3 + 32 +  33 +....+32022

     3A   =      3  + 32  + 33 +.....+32022 + 32023

3A - A  =     32023 - 1

      2A =     32023 - 1

2A - 22023 = 32023 - 1 - 22023 

2A - 22023 = -1 

b, x \(\in\) Z và x + 10 \(⋮\) x - 1 ( đk x# 1)

                      x + 10 \(⋮\) x - 1 

            \(\Leftrightarrow\) x - 1 + 11 \(⋮\) x - 1

                            11 \(⋮\) x - 1

                    x-1 \(\in\) { -11; -1; 1; 11}

                    x     \(\in\) { -10; 0; 2; 12}

Kết luận các số nguyên x thỏa mãn yêu cầu đề bài là :

                   x   \(\in\) { -10; 0; 2; 12}

a: \(3A=3^2+3^3+3^4+...+3^{2007}\)

24 tháng 12 2021

\(a,A=3+3^2+3^3+3^4+...+3^{100}\\ 3A=3^2+3^3+3^4+3^5+3^{101}\\ 3A-A=2A=3^{101}-3\\ \Rightarrow2A+3=3^{101}=3^{4.25+1}\\ \Rightarrow n=25\)

 

18 tháng 6 2018

a,

A = 1 + 3 + 32 + 33 + ... + 3119 

3A = 3.(1 + 3 + 32 + 33 + ... + 3119

3A = 3 + 32 + 33 + 34+ ... + 3120

2A = 3A - A = (3 + 32 + 33 + 34 + ... + 3120) - (1 + 3 + 32 + 33 + ... + 3119

2A = 3120 - 1 

A = \(\frac{3^{120}-1}{2}\)

Vậy A = \(\frac{3^{120}-1}{2}\)

b, Ta có : 3120 - 1 + 1 = 27x 

<=> 3120 = 27x 

<=> 3120 = (33)x 

<=> 3120 = 3x 

<=> x = 120 

Vậy x = 120 

c, A có chia hết cho 5 và 13 

19 tháng 6 2018

Sua cho \(\left(3^3\right)^x=3^{3x}\) nha 

\(\Rightarrow3^{120}=3^{3x}\Rightarrow x=\frac{120}{3}=40\)

18 tháng 11 2021

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2021}\\ \Rightarrow3A-A=3^2+3^3+...+3^{2021}-3-3^2-3^3-...-3^{2020}\\ \Rightarrow2A=3^{2021}-3\\ \Rightarrow2A+3=3^{2021}=3^x\\ \Rightarrow x=2021\)

20 tháng 7 2021

A=3+32+33+...+3100

3A=32+33+...+3101

3A-A=(32+33+...+3101)-(3+32+33+...+3100)

2A=3101-3

2A+3=3101

20 tháng 7 2021

\(A=3+3^2+3^3+...+3^{100}\) 

\(\Rightarrow3A=3.\left(3+3^2+3^3+...+3^{100}\right)\) 

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\) 

\(\Rightarrow3A-A=2A=\left[3^2+3^3+3^4+...+3^{101}\right]-\left[3+3^2+3^3+...+3^{100}\right]\)\(\Rightarrow2A=3^{101}-3\) 

Theo đề bài ta có  2A + 3 = 3n ( \(n\in N\) )

\(\Rightarrow2A+3=3^{101}-3+3=3^n\) 

\(\Rightarrow2A+3=3^{101}=3^n\)  

\(\Rightarrow3^{101}=3^n\) 

\(\Rightarrow101=n\) ( thỏa mãn điều kiện \(n\in N\)

Vậy n = 101