K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

=>3a=32+33+...+32007

=>3a-a=2a=(32+33+34+...+32007)-(3+32+...+32006)

=>2a=32007-3

=>2a+3=32007-3+3

=>3x=32007

=>x=2007

N
7 tháng 8 2016

\(A=3^1+3^2+...+3^{2006}\)

\(3A=3^2+3^3+...+3^{2007}\)

\(3A-A=\left(3^2+3^3+...+3^{2007}\right)-\left(3+3^2+...+3^{2006}\right)\)

\(2A=3^{2007}-3\)

=> 2a +3=32007 - 3 + 3 = 32007 = 3x

=> x = 2007

14 tháng 8 2023

1.

a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(2A=2+2^2+2^3+....+2^{2008}\)

b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)

\(=2^{2008}-1\) (bạn xem lại đề)

 

2.

\(A=1+3+3^1+3^2+...+3^7\)

a. \(2A=2+2.3+2.3^2+...+2.3^7\)

b.\(3A=3+3^2+3^3+...+3^8\)

\(2A=3^8-1\)

\(=>A=\dfrac{2^8-1}{2}\)

 

3

.\(B=1+3+3^2+..+3^{2006}\)

a. \(3B=3+3^2+3^3+...+3^{2007}\)

b. \(3B-B=2^{2007}-1\)

\(B=\dfrac{2^{2007}-1}{2}\)

 

4.

Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)

a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)

b.\(4C-C=4^7-1\)

\(C=\dfrac{4^7-1}{3}\)

 

5.

\(S=1+2+2^2+2^3+...+2^{2017}\)

\(2S=2+2^2+2^3+2^4+...+2^{2018}\)

\(S=2^{2018}-1\)

4:

a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6

=>4*C=4+4^2+...+4^7

b: 4*C=4+4^2+...+4^7

C=1+4+...+4^6

=>3C=4^7-1

=>\(C=\dfrac{4^7-1}{3}\)

5:

2S=2+2^2+2^3+...+2^2018

=>2S-S=2^2018-1

=>S=2^2018-1

a: \(3A=3^2+3^3+3^4+...+3^{2007}\)

27 tháng 3 2018

a) Ta có : \(3A=3^{2007}+3^{2006}+...+3^3+3^2\)

                   A =                     \(3^{2006}+...+3^3+3^2+3\)

\(\Rightarrow2A=3^{2007}-3\)

\(\Rightarrow A=\frac{3^{2007}-3}{2}\)

b) Ta có \(2A=3^{2007}-3\)\(\Rightarrow2A+3=3^{2007}\)

Theo bài ta có: \(2A+3=3x\)

\(\Rightarrow3^{2007}=3x\)

\(\Rightarrow3.3^{2006}=3x\)

\(\Rightarrow x=3^{2006}\)

6 tháng 8 2016

3/2+5/4+9/8/+17/16+33/32-6+x-1/x+1=31/32-2/2015

=(1+1/2)+(1+1/4)+(1+1/8)+(1+1/16)+(1+1/32-6+x-1/x+1=31/32-2/2015

=(1/2+1/4+1/8+1/16+1/32)+(1+1+1+1+1)-6+x-1/x+1=31/32-2/2015

=31/32+5-6+x-1/x+1=31/32-2/2015

=5-6+x-1/x+1=31/32-2/2015-31/32

=-1+x-1/x+1=-2/2015

=x-1/x+1=-2/2015- -1

=x-1/x+1=2013/2015

=>x=2014

30 tháng 7 2016

\(x+2x+3x+...+9x=459-3^2\) 

\(\Rightarrow9x+\left(1+2+3+...+9\right)=450\) 

\(\Rightarrow9x+\frac{\left[\left(9+1\right).9\right]}{2}=450\) 

\(\Rightarrow9x+45=450\) 

\(\Rightarrow9x=450-45\) 

\(\Rightarrow x=\frac{450-45}{9}=\frac{405}{9}=45\)

30 tháng 7 2016

\(2^{x+3}+2^x=144\) 

\(\Rightarrow2^x\left(2^3+1\right)=144\) 

\(\Rightarrow2^x.9=144\) 

\(\Rightarrow2^x=\frac{144}{9}=16=2^4\) 

Vậy \(x=4\)

22 tháng 6 2017

a, A =   3 + 3 2 + 3 3 + . . . + 3 12 => 3A =  3 2 + 3 3 + . . . + 3 13

=> 3A - A = ( 3 2 + 3 3 + . . . + 3 13 ) - ( 3 + 3 2 + 3 3 + . . . + 3 12 )

=> 2A =  3 13 - 3 => A =  3 13 - 3 2

Vì A =  3 x - 3 2 => x = 13 => x+2016 = 2029

b, Số tập hợp con của tập A có x phần tử là  2 x

=>  2 x = 64 =  2 6 => x = 6. Vậy tập A có 6 phần tử

a: Tổng các số hạng là:

\(\dfrac{\left(220+1\right)\cdot220}{2}=24310\)

Ta có: A+1=2x

\(\Leftrightarrow2x=24311\)

hay \(x=\dfrac{24311}{2}\)

14 tháng 9 2021

a, 2 x ( 15 - 3x ) = 12

=>  15 - 3x  =  6

=>  3x  = 9

=>  x  =  3

b, 39 - 2 x ( 31 - 3x ) = 15

=>  2 x ( 31 - 3x ) =  24

=>  31 - 3x  = 12

=>  3x  = 19

=>  x  =  \(\frac{19}{3}\)

14 tháng 9 2021

nếu mk sửa đề có sai thì nhờ bạn sửa đề lại giúp mk nha

20 tháng 7 2021

A=3+32+33+...+3100

3A=32+33+...+3101

3A-A=(32+33+...+3101)-(3+32+33+...+3100)

2A=3101-3

2A+3=3101

20 tháng 7 2021

\(A=3+3^2+3^3+...+3^{100}\) 

\(\Rightarrow3A=3.\left(3+3^2+3^3+...+3^{100}\right)\) 

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\) 

\(\Rightarrow3A-A=2A=\left[3^2+3^3+3^4+...+3^{101}\right]-\left[3+3^2+3^3+...+3^{100}\right]\)\(\Rightarrow2A=3^{101}-3\) 

Theo đề bài ta có  2A + 3 = 3n ( \(n\in N\) )

\(\Rightarrow2A+3=3^{101}-3+3=3^n\) 

\(\Rightarrow2A+3=3^{101}=3^n\)  

\(\Rightarrow3^{101}=3^n\) 

\(\Rightarrow101=n\) ( thỏa mãn điều kiện \(n\in N\)

Vậy n = 101