Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D = 40 + 41 + 42 + 43 + 44 + ... + 4200
4.D = 4 + 42 + 43 + 44 + 45 +... + 4201
4D - D = (4 + 42 + 43 + 44 + 45 + ... + 4201) - (40 + 41 + 42 +...+4200)
3D = 4 + 42 + 44 + 44 + 45 + ... + 4201 - 40 - 41 - 42 - ... - 4200
3D = (4 - 41) + (42 - 42) + .... + (4200 - 4200) + 4201 - 40
3D = 4201 - 40
3D + 1 = 4201 - 1 + 1
3D + 1 = 4201
Theo bài ra ta có: 4201 = 4n+1
n + 1 = 201
n = 201 - 1
n = 200
\(D=4^0+4^1+4^2+4^3+4^4+...+4^{200}\\4D=4\cdot(4^0+4^1+4^2+4^3+4^4+...+4^{200})\\4D=4^1+4^2+4^3+4^4+4^5+...+4^{201}\\4D-D=(4^1+4^2+4^3+4^4+4^5+...+4^{201})-(4^0+4^1+4^2+4^3+4^4+...+4^{200})\\3D=4^{101}-4^0\\3D=4^{101}-1\\\Rightarrow 3D+1=4^{101}\)
Mặt khác: \(3D+1=4^{n+1}\)
\(\Rightarrow 4^{n+1}=4^{101}\\\Rightarrow n+1=101\\\Rightarrow n=101-1=100(tmdk)\)
a) Ta có : A=2+22+23+...+210
=(2+22)+(23+24)+...+(29+210)
=2(1+2)+23(1+2)+...+29(1+2)
=2.3+23.3+...+29.3
Vì 3\(⋮\)3 nên 2.3+23.3+...+29.3\(⋮\)3
hay A\(⋮\)3
Vậy A\(⋮\)3.
Theo đề ra, ta có:
\(\hept{\begin{cases}\left(a+7\right)⋮28\\\left(a+7\right)⋮24\\\left(a+7\right)⋮16\end{cases}}\Rightarrow\left(a+7\right)\in BC\left(28;24;16\right)\)
Ta có:
\(28=2^2.7\)
\(24=2^3.3\)
\(16=2^4\)
\(\Rightarrow BCNN\left(16;18;24\right)=2^4.3.7=336\)
\(\Rightarrow\left(a+7\right)=BC\left(16;18;24\right)=\left\{0;336;672;1008;...\right\}\)
Mà đề ra a là số nhỏ nhất có bốn chữ số
\(a+7=1008\Rightarrow a=1008-7\Rightarrow a=1001\)
\(A=1+4+4^2+...+4^{2019}+4^{2020}+4^{2021}\)
\(=\left(1+4+4^2\right)+...+4^{2019}.\left(1+4+4^2\right)\)
\(=21+...+4^{2019}.21\)
\(=21.\left(1+...+4^{2019}\right)\)
Do 21 chia hết cho 21 nên A chia hết cho 21
Suy ra A chia 21 dư 0
A = 1 + 4 + 42 + 43 + ... + 42021
A = 40 + 4 + 42 + 43 + ... + 42021
Xét dãy số: 0; 1; 2; 3;...; 2021
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (2021 - 0) : 1 + 1 = 2022
Vì 2022 : 3 = 674
Vậy nhóm ba số hạng liên tiếp của A vào một nhóm khi đó ta có:
(Làm tiếp như thầy Lâm)