K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
12 tháng 12 2019
a) Ta có : A=2+22+23+...+210
=(2+22)+(23+24)+...+(29+210)
=2(1+2)+23(1+2)+...+29(1+2)
=2.3+23.3+...+29.3
Vì 3\(⋮\)3 nên 2.3+23.3+...+29.3\(⋮\)3
hay A\(⋮\)3
Vậy A\(⋮\)3.
PT
2
A
0
NV
1
16 tháng 3 2017
Đặt A=102+18n-1
=10n-1+18n
=9999...9(n c/số 9)+18n
=9.11111...1(n c/số 1)+9.2n
=9(1111...1(n c/số 1+2n)
mà 111...1(n c/số 1)=n+9q
=>A=9.(9q+n+2n)
=>A=9(9q+3n)
=9.3.(3q+n)
=27(3q+n)
=>\(A⋮27\)
vậy...(đccm)
mấy bài sau dễ òi
bn tự làm nhé
D = 40 + 41 + 42 + 43 + 44 + ... + 4200
4.D = 4 + 42 + 43 + 44 + 45 +... + 4201
4D - D = (4 + 42 + 43 + 44 + 45 + ... + 4201) - (40 + 41 + 42 +...+4200)
3D = 4 + 42 + 44 + 44 + 45 + ... + 4201 - 40 - 41 - 42 - ... - 4200
3D = (4 - 41) + (42 - 42) + .... + (4200 - 4200) + 4201 - 40
3D = 4201 - 40
3D + 1 = 4201 - 1 + 1
3D + 1 = 4201
Theo bài ra ta có: 4201 = 4n+1
n + 1 = 201
n = 201 - 1
n = 200
\(D=4^0+4^1+4^2+4^3+4^4+...+4^{200}\\4D=4\cdot(4^0+4^1+4^2+4^3+4^4+...+4^{200})\\4D=4^1+4^2+4^3+4^4+4^5+...+4^{201}\\4D-D=(4^1+4^2+4^3+4^4+4^5+...+4^{201})-(4^0+4^1+4^2+4^3+4^4+...+4^{200})\\3D=4^{101}-4^0\\3D=4^{101}-1\\\Rightarrow 3D+1=4^{101}\)
Mặt khác: \(3D+1=4^{n+1}\)
\(\Rightarrow 4^{n+1}=4^{101}\\\Rightarrow n+1=101\\\Rightarrow n=101-1=100(tmdk)\)