Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(b+c+d\right)^2=b^2+c^2+d^2+2\left(ab+bc+ca\right)\le3\left(b^2+c^2+d^2\right)\)
Thay giả thiết vào ta có:
\(\left(7-a\right)^2\le3\left(13-a^2\right)\Leftrightarrow4a^2-14a+10\le0\Rightarrow1\le a\le\frac{5}{2}\)
Vậy Min a=1 khi b=c=d=2
Max a=5/2 khi b=c=d=3/2
a) Nếu p=3 thì \(2^p+p^2=2^3+3^2=17\) là số nguyên tố
Nếu \(p\ge5\) thì \(2^p+p^2=\left(2^p+1\right)+\left(p^2-1\right)=\left(2^p+1\right)+\left(p-1\right)\left(p+1\right)\)
Khi p là số nguyên tố , \(p\ge5\)=> p lẻ và p không chia hết cho 3; do đó: \(\left(2^p+1\right)\)chia hết cho 3 và (p-1)(p+1) chia hết cho 3 \(\Rightarrow\left(2^p+p^2\right)\)chia hết cho 3 \(\Rightarrow p^2+2^p\)không là số nguyên tố
Khi p=2, ta có : \(2^p+p^2=2^2+2^2=8\)là hợp số
Vậy duy nhất có p=3 thỏa mãn.
b) \(a+b+c+d=7\Rightarrow b+c+d=7-a\Rightarrow\left(b+c+d\right)^2=\left(7-a\right)^2\)
Mặt khác: \(\left(b+c+d\right)^2\le3\left(b^2+c^2+d^2\right)\Rightarrow\left(7-a\right)^2\le3\left(13-a^2\right)\)
Lại có : \(\left(7-a\right)^2\le3\left(13-a^2\right)\Leftrightarrow49-14a+a^2\le39-3a^2\Leftrightarrow4a^2-14a+10\le0\)
Giải ra được : \(1\le a\le\frac{5}{2}\)
Vậy : a có thể nhận giá trị lớn nhất là \(\frac{5}{2}\), nhận giá trị nhỏ nhất là 1
Đề thi học kỳ 1 trường Ams
**Min
Từ \(a^2+b^2+c^2=1\Rightarrow a^2\le1;b^2\le1;c^2\le1\)
\(\Rightarrow a\le1;b\le1;c\le1\Rightarrow a^2\le a;b^2\le b;c^2\le c\)
Khi đó:
\(\sqrt{a+b^2}\ge\sqrt{a^2+b^2};\sqrt{b+c^2}\ge\sqrt{b^2+c^2};\sqrt{c+a^2}\ge\sqrt{c^2+a^2}\)
\(\Rightarrow P\ge\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
\(\Rightarrow P\ge\sqrt{1-c^2}+\sqrt{1-a^2}+\sqrt{1-b^2}\)
Ta có:
\(\sqrt{1-c^2}\ge1-c^2\Leftrightarrow1-c^2\ge1-2c^2+c^4\Leftrightarrow c^2\left(1-c^2\right)\ge0\left(true!!!\right)\)
Tương tự cộng lại:
\(P\ge3-\left(a^2+b^2+c^2\right)=2\)
dấu "=" xảy ra tại \(a=b=0;c=1\) and hoán vị.
**Max
Có BĐT phụ sau:\(\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{3\left(a+b+c\right)}\left(ezprove\right)\)
Áp dụng:
\(\sqrt{a+b^2}+\sqrt{b+c^2}+\sqrt{c+a^2}\)
\(\le\sqrt{3\left(a+b+c+a^2+b^2+c^2\right)}\)
\(=\sqrt{3\left(a+b+c\right)+3}\)
\(\le\sqrt{3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+3\right)}=\sqrt{3\cdot\sqrt{3}+3}\)
Dấu "=" xảy ra tại \(a=b=c=\pm\frac{1}{\sqrt{3}}\)
\(a^2+b^2+c^2+d^2=13\)
\(\Rightarrow a^2\le13\)
\(\Leftrightarrow a\le\sqrt{13}\approx3,61\) (1)
Lại có \(a+b+c+d=7\)
\(\Leftrightarrow a\le7\) (2)
Từ (1) và (2) \(\Rightarrow a_{max}=3\).