\(\hept{\begin{cases}a+b+c+d=7\\a^2+b^2+c^2+d^2=13\end{cases}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

http://imgur.com/O0UaOOL
Đã giải tại . 

3 tháng 7 2017

\(\left(7-d\right)^2=\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=3\left(13-d^2\right)\)

=>\(4d^2-14d+10\le0\)

=>\(\left(d-1\right)\left(4d-10\right)\le0\)

=>\(1\le d\le\frac{5}{2}\).Làm tương tự đối với a,b,c

26 tháng 3 2017

Bài này dễ ẹc, cho tí não vào là ok 

Giải

Dự đoán dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\) khi đó ta tìm dc \(S=2\)

Ta sẽ chứng minh nó là GTNN của \(S\)

Thật vậy, theo BĐT Cauchy-Schwarz ta có: 

\(Σ\frac{a^2+b}{b+c}\ge\frac{\left(Σa^2+1\right)^2}{Σa^2\left(b+c\right)+Σa^2+Σab}\)

Vậy ta chỉ cần chứng minh rằng \(\frac{\left(Σa^2+1\right)^2}{Σa^2\left(b+c\right)+Σa^2+Σab}\ge2\)

\(\Leftrightarrow1+\left(Σa^2\right)^2\ge2Σa^2\left(b+c\right)+2Σab\)

BĐT cuối cùng có thể biến đổi như sau:

\(1+\left(Σa^2\right)^2\ge2Σa^2\left(b+c\right)+2Σab\)

\(\Leftrightarrow1+\left(Σa^2\right)^2\ge2Σa^2-2Σa^3+2Σab\)

\(\Leftrightarrow\left(Σa^2\right)^2+2Σa^3\geΣa^2\) điều này đúng, vì 

\(Σa^3\ge\frac{Σa^2}{3}\)(BĐT Chebyshev). Và \(\left(Σa^2\right)^2\ge\frac{Σa^2}{3}\)

2 tháng 2 2022

c) Có \(P=\frac{ax+b}{x^2+1}=-1+\frac{x^2+ax+b+1}{x^2+1}\)

\(P=\frac{ax+b}{x^2+1}=4-\frac{4x^2-ax-b+4}{x^2+1}\)

Để Min P = 1 và Max P = 4 thì 

\(\hept{\begin{cases}x^2+ax+b+1=\left(x+c\right)^2\\4x^2-ax-b+4=\left(2x+d\right)^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\left(a-2c\right)+\left(b+1-c^2\right)=0\left(1\right)\\x\left(-a-4d\right)+\left(-b+4-d^2\right)=0\left(2\right)\end{cases}}\)

(1) = 0 khi \(\hept{\begin{cases}a=2c\\b=c^2-1\end{cases}}\)(3) 

(2) = 0 khi \(\hept{\begin{cases}a=-4d\\b=4-d^2\end{cases}}\)(4) 

Từ (3) (4) => d = 1 ; c = -2 ; b = 3 ; a = -4

Vậy \(P=\frac{-4x+3}{x^2+1}\)

3 tháng 2 2022

ĐK \(x\ge y\)

Đặt \(\sqrt{x+y}=a;\sqrt{x-y}=b\left(a;b\ge0\right)\) 

HPT <=> \(\hept{\begin{cases}a^4+b^4=82\\a-2b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2b+1\right)^4+b^4=82\\a=2b+1\end{cases}}\Leftrightarrow\hept{\begin{cases}17b^4+32b^3+24b^2+8b-81=0\\a=2b+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}17b^4-17b^3+49^3-49b^2+73b^2-73b+81b-81=0\\a=2b+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(b-1\right)\left(17b^3+49b^2+73b+81\right)=0\left(1\right)\\a=2b+1\end{cases}}\)

Giải (1) ; kết hợp điều kiện => b = 1

=> Hệ lúc đó trở thành \(\hept{\begin{cases}b=1\\a=2b+1\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\a=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+y}=3\\\sqrt{x-y}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=9\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=10\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=4\end{cases}}\)

Vậy hệ có 1 nghiệm duy nhất (x;y) = (5;4) 

bài 1: Trong b​uổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữbài 2: 1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đób) tìm a để hệ phương...
Đọc tiếp

bài 1: Trong b​uổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữ

bài 2: 

1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)

a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đó

b) tìm a để hệ phương trình vô nghiệm

2. cho hệ phương trình \(\hept{\begin{cases}ax-2y=a\\-2x+y=a+1\end{cases}}\)

a) tìm a để hệ phương trình có nghiệm duy nhất, khi đó tính x;y theo a

b) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn: x-y=1

c) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn x và y là các số nguyên

bài 3:

1.Chứng minh với mọi giá trị của m thì hệ phương trình \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}}\)(m là tham số) luôn có nghiệm duy nhất (x;y) thỏa mãn: \(2x+y\le3\)

2. Xác định giá trị của m để hệ phương trình \(\hept{\begin{cases}mx+5y=3\\x-3y=5\end{cases}}\)vô nghiệm

 

 

0
15 tháng 8 2018

\(\frac{d}{b^2}\) hay \(\frac{b^2}{d}\)hả bạn?

16 tháng 8 2018

Ta có: \(\frac{a^4}{c}+\frac{b^4}{d}\ge\frac{\left(a^2+b^2\right)^2}{c+d}=\frac{1}{c+d}\)

Dấu = xảy ra khi \(\frac{a^2}{c}=\frac{b^2}{d}\)

Do đó: \(VT=\frac{a^2}{c}+\frac{b}{d^2}=\frac{d^2}{b}+\frac{b}{d^2}\ge2\sqrt{\frac{d^2}{b}.\frac{b}{d^2}}=2\)

10 tháng 9 2020

Áp dụng bất đăng thức Holder, ta có

\(\Sigma_{cyc} a \sqrt[3]{b^2+c^2} = \Sigma_{cyc} \sqrt[3]{a.a^2.(b^2+c^2)} \le \sqrt[3]{( \Sigma_{cyc} a).(\Sigma_{cyc} a^2).[\Sigma_{cyc} (b^2+c^2)} \le \sqrt[3]{\sqrt{3\Sigma_{cyc} a^2}.(\Sigma_{cyc} a^2).(2\Sigma_{cyc} a^2}) \le 12\)

2 tháng 8 2020

bài 2 là tìm giá trị lớn nhất ạ!

ta có A>=0. xét 100=xy+z+xz\(\ge3\sqrt[3]{xy\cdot yz\cdot zx}\)

\(\Rightarrow100\ge3\sqrt[3]{A^2}\Rightarrow\left(\frac{100}{3}\right)^3\ge A^2\Rightarrow A< \frac{100}{3}\sqrt{\frac{100}{3}}\)

dấu đẳng thức xảy ra khi xy=yz=zx

3 tháng 8 2020

Bài 1 nhìn vô đoán ngay a=3,b=2 -> S=13!

AM-GM:\(\frac{5}{9}\left(a^2+9\right)\ge\frac{10}{3}a;\text{ }\frac{4}{9}\left(a^2+\frac{9}{4}b^2\right)\ge\frac{4}{3}ab\)

\(\rightarrow a^2+b^2+5\ge\frac{10}{3}a+\frac{4}{3}ab\ge\frac{10}{3}\cdot3+\frac{4}{3}\cdot6=18\)

\(\Rightarrow S=a^2+b^2\ge13\) (đúng)

Đẳng thức xảy ra khi a=3, b=2.

26 tháng 8 2020



bđt1

bạn sửa lại là 9-2t^2 nhé , mình đánh nhầm ^^

26 tháng 8 2020

chuẩn nhé !

bđt 123