Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le}2+a\)
Tương tự \(b^2\le2+b,c^2\le2+c\Rightarrow a^2+b^2+c^2\le6+a+b+c=6\)
Dấu "=" xảy ra khi a=2,b=c=-1 và các hoán vị của chúng
Xét \(\frac{a^2+1}{a}=a+\frac{1}{a}\)
Dễ thấy dấu "=" xảy ra khi \(a=\frac{1}{3}\)
khi đó \(a+\frac{1}{a}=a+\frac{1}{9a}+\frac{8}{9a}\ge2\sqrt{\frac{a.1}{9a}}+\frac{8}{\frac{9.1}{3}}=\frac{10}{3}\)
\(\Rightarrow\frac{a}{a^2+1}\le\frac{3}{10}\)
tương tự =>đpcm
Haizz nhầm rồi:(
BĐT \(\Leftrightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\le1+2+3\)
\(\Leftrightarrow\sqrt{a}.1+\frac{\sqrt{b}}{2}.2+\frac{\sqrt{c}}{3}.3\le1+2+3\)
\(VT=\frac{\sqrt{c}}{3}.1+\left(\frac{\sqrt{c}}{3}.1+\frac{\sqrt{b}}{2}.1\right)+\left(\frac{\sqrt{c}}{3}.1+\frac{\sqrt{b}}{2}.1+\sqrt{a}.1\right)\)
\(\le\frac{1}{2}\left[\frac{c}{9}+\left(\frac{c}{9}+\frac{b}{4}\right)+\left(\frac{c}{9}+\frac{b}{4}+a\right)+6\right]\) (áp dụng BĐT \(xy\le\frac{x^2+y^2}{2}\))
\(\le\frac{1}{2}\left(1+2+3+6\right)=6^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi a = 1; b = 4; c = 9
Is that true?Mong là lần này em không bị nhầm dấu-_-
Mình làm thử,đúng hay không thì mình không biết.Có chi mong bạn thông cảm và ib lỗi sai cho mình nha
Từ \(a+\frac{b}{4}+\frac{c}{9}\le3\) và \(\frac{b}{4}+\frac{c}{9}\le2\)
Suy ra \(a=\left(a+\frac{b}{4}+\frac{c}{9}\right)-\left(\frac{b}{4}+\frac{c}{9}\right)\le3-2=1\) (1)
Từ \(\frac{b}{4}+\frac{c}{9}\le2\) và \(c\le9\) suy ra \(\frac{b}{4}+\frac{c}{9}\le\frac{b}{4}+\frac{9}{9}=1\le2\)
\(\Rightarrow\frac{b}{4}\le1\Rightarrow b\le4\) (2)
Từ (1) và (2) kết hợp với giả thiết suy ra \(\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{1}+\sqrt{4}+\sqrt{9}=6^{\left(đpcm\right)}\)
Đặt x = 1/a ; y = 1/b, z = 1/c với x,y,z > 0
đk <=> 1/x + 1/y + 1/z = 1/(xyz)
<=> xy + yz + zx = 1
A = √[yz/(1+x²)] + √[zx/(1+y²)] + √[xy/(1+z²)]
Ta có:
1 + x² = x² + xy + yz + zx = (x+z)(x+y)
=> √[yz/(1+x²)] = √[y/(x+y)] . √[z/(x+z)]
≤ 1/2 . [y/(x+y) + z/(x+z)] (1)
(áp dụng bđt Cosi: √m .√n ≤ 1/2 . (m+n))
Tương tự:
√[xz/(1+y²)] = √[x/(x+y)] . √[z/(y+z)] ≤ 1/2 . [x/(x+y) + z/(y+z)] (2)
√[xy/(1+z²)] = √[y/(z+y)] . √[x/(x+z)] ≤ 1/2 . [y/(z+y) + x/(x+z)] (3)
Cộng vế của (1),(2) và (3) lại ta được:
A ≤ 1/2 . 3 = 3/2
Vậy Max A = 3/2 xảy ra <=> x = y = z = 1/√3 <=> a = b = c = √3
\(\frac{d}{b^2}\) hay \(\frac{b^2}{d}\)hả bạn?
Ta có: \(\frac{a^4}{c}+\frac{b^4}{d}\ge\frac{\left(a^2+b^2\right)^2}{c+d}=\frac{1}{c+d}\)
Dấu = xảy ra khi \(\frac{a^2}{c}=\frac{b^2}{d}\)
Do đó: \(VT=\frac{a^2}{c}+\frac{b}{d^2}=\frac{d^2}{b}+\frac{b}{d^2}\ge2\sqrt{\frac{d^2}{b}.\frac{b}{d^2}}=2\)