\(a^{10}+b^{10}=a^{11}+b^{11}=a^{12}+b^{12}\) Tính P = 2011a -...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2020

\(\text{Ta có:}\)

\(a^{12}+b^{12}-\left(a^{11}+b^{11}\right)\left(a+b\right)+\left(a^{10}+b^{10}\right)ab=0\)

\(\Rightarrow\left(a^{12}+b^{12}\right)\left(ab-a-b+1\right)=0\Leftrightarrow\orbr{\begin{cases}a=1\\b=1\end{cases}}\)

\(+,a=1\Rightarrow b^{10}=b^{11}=b^{12}\Rightarrow b=1\left(\text{vì b dương}\right)\)

\(+,b=1\Rightarrow a^{10}=a^{11}=a^{12}\Rightarrow a=1\left(\text{vì a dương}\right)\)

\(\text{nên: a=b=1}\)

\(\text{Vậy: P=2011a-2012b=2011-2012=-1}\)

12 tháng 10 2019

với a, b >0

\(a^9+b^9=a^{10}+b^{10}< =>a^9\left(a-1\right)+b^9\left(b-1\right)=0\)

\(a^{10}+b^{10}=a^{11}+b^{11}< =>a^{10}\left(a-1\right)+b^{10}\left(b-1\right)=0\)

trừ vế theo vế ta được (a-1)(a10-a9) + (b-1)(b10-b9) = 0 <=> [b3(b-1)]2 + [b3(b-1)]2 =0

<=> \(\hept{\begin{cases}a^3\left(a-1\right)=0\\b^3\left(b-1\right)=0\end{cases}< =>\hept{\begin{cases}a-1=0\\b-1=0\end{cases}< =>}}\)a = b =1 

vậy P= 2020

6 tháng 12 2017

Câu 1:

Theo bài ra ta có:

\(a^{12}+b^{12}=a^{12}+a^{11}b-a^{11}b-ab^{11}+ab^{11}+b^{12}\)

\(=a^{11}\left(a+b\right)-ab\left(a^{10}+b^{10}\right)+b^{11}\left(a+b\right)\)

\(=\left(a+b\right)\left(a^{11}+b^{11}\right)-ab\left(a^{10}+b^{10}\right)\)

\(=\left(a+b\right)\left(a^{12}+b^{12}\right)-ab\left(a^{12}+b^{12}\right)\)(gt cho rồi nhé)

\(=\left(a^{12}+b^{12}\right)\left(a+b-ab\right)\)

\(\Rightarrow a+b-ab=1\)

\(\Leftrightarrow a+b-ab-1=0\)

\(\Leftrightarrow a\left(1-b\right)-\left(1-b\right)=0\)

\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\)

\(\)\(\Leftrightarrow\left[{}\begin{matrix}b=1\\a=1\end{matrix}\right.\)

=> a^20 + b^20 = 2

:)) đừng ném đá nhá

7 tháng 12 2017

Giải đúng quá nhỉ?bn giỏi toán quá hihi

6 tháng 6 2017

Mong các bạn giúp mình, trong lúc hỏi mình sẽ luôn suy nghĩ chứ ko hoàn toàn dựa vào các bạn đâu, nếu bời ạn nào ra đáp án vui lòng ghi cả lời giải giúp mình

8 tháng 6 2017

xin lỗi các bạn B2 là chia cho x2+2x dư -3x+2 nhé

24 tháng 3 2018

a) Quy đồng bỏ mẫu rồi giai pt ta đc : \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

b)\(x=1\)

25 tháng 3 2018

Con bai 2 thi sao a

6 tháng 12 2016

Có    \(a^{12}+b^{12}=a^{12}+a^{11}b-a^{11}b+ab^{11}-ab^{11}+b^{12}\)

\(=a^{11}\left(a+b\right)+b^{11}\left(a+b\right)-a^{11}b-ab^{11}\)

\(=\left(a^{11}+b^{11}\right)\left(a+b\right)-ab\left(a^{10}+b^{10}\right)\)

\(=\left(a^{12}+b^{12}\right)\left(a+b\right)-ab\left(a^{12}+b^{12}\right)\)(vì giả thiết cho \(a^{10}+b^{10}=a^{11}+b^{11}=a^{12}+b^{12}\))

\(=\left(a^{12}+b^{12}\right)\left(a+b-ab\right)\)

Đã chứng minh \(a^{12}+b^{12}=\left(a^{12}+b^{12}\right)\left(a+b-ab\right)\)suy ra:

      \(a+b-ab=1\)

=>  \(a+b-ab-1=0\)

=>  \(a-1-b\left(a-1\right)=0\)

=>  \(\left(a-1\right)\left(1-b\right)=0\)

=> \(a=1\)hoặc \(b=1\)

Nếu \(a=1\)thì từ giả thiết suy ra

     \(b^{10}+1=b^{11}+1\)

=> \(b^{10}=b^{11}\)suy ra \(b^{10}\left(b-1\right)=b^{11}-b^{10}=0\)

Mà đề cho b dương =>\(b=1\)=>\(P=a^{20}+b^{20}=2\)

Nếu \(b=1\)thì từ giả thiết suy ra

     \(a^{10}+1=a^{11}+1\)

=> \(a^{10}=a^{11}\)suy ra \(a^{10}\left(a-1\right)=a^{11}-a^{10}=0\)

Mà đề cho a dương =>\(a=1\)=>\(P=a^{20}+b^{20}=2\)