K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2016

Có    \(a^{12}+b^{12}=a^{12}+a^{11}b-a^{11}b+ab^{11}-ab^{11}+b^{12}\)

\(=a^{11}\left(a+b\right)+b^{11}\left(a+b\right)-a^{11}b-ab^{11}\)

\(=\left(a^{11}+b^{11}\right)\left(a+b\right)-ab\left(a^{10}+b^{10}\right)\)

\(=\left(a^{12}+b^{12}\right)\left(a+b\right)-ab\left(a^{12}+b^{12}\right)\)(vì giả thiết cho \(a^{10}+b^{10}=a^{11}+b^{11}=a^{12}+b^{12}\))

\(=\left(a^{12}+b^{12}\right)\left(a+b-ab\right)\)

Đã chứng minh \(a^{12}+b^{12}=\left(a^{12}+b^{12}\right)\left(a+b-ab\right)\)suy ra:

      \(a+b-ab=1\)

=>  \(a+b-ab-1=0\)

=>  \(a-1-b\left(a-1\right)=0\)

=>  \(\left(a-1\right)\left(1-b\right)=0\)

=> \(a=1\)hoặc \(b=1\)

Nếu \(a=1\)thì từ giả thiết suy ra

     \(b^{10}+1=b^{11}+1\)

=> \(b^{10}=b^{11}\)suy ra \(b^{10}\left(b-1\right)=b^{11}-b^{10}=0\)

Mà đề cho b dương =>\(b=1\)=>\(P=a^{20}+b^{20}=2\)

Nếu \(b=1\)thì từ giả thiết suy ra

     \(a^{10}+1=a^{11}+1\)

=> \(a^{10}=a^{11}\)suy ra \(a^{10}\left(a-1\right)=a^{11}-a^{10}=0\)

Mà đề cho a dương =>\(a=1\)=>\(P=a^{20}+b^{20}=2\)

24 tháng 6 2016

Ta có:

\(^{a^{12}+b^{12}=a.\left(a^{11}+b^{11}\right)-ab^{11}+b.\left(a^{11}+b^{11}\right)-ba^{11}}\)

\(\Rightarrow a^{12}+b^{12}=a.\left(a^{11}+b^{11}\right)+b.\left(a^{11}+b^{11}\right)-ab.\left(a^{10}+b^{10}\right)\)

Do \(a^{12}+b^{12}=a^{11}+b^{11}=a^{10}+b^{10}\)và các tổng này khác 0 ( do a,b khác 0)

\(\Rightarrow1=a+b-ab\)

=> 1= a+b.(1-a)

=> 1-a= b.(1-a)

=> (1-a) - b.(1-a)=0

=> (1-a).(1-b)=0

=> 1-a=0 hoặc 1-b=0 => a=1 hoặc b=1

Với a=1 thì 1^10+b^10=1^11+b^11=>b^10=b^11. Do b khác 0=> b=1

Với b=1 thì a^10+1^10=a^11+1^11=>a^10=a^11. Do a khác 0=> a=1

=> a=1 và b=1

=> M= a^2012+b^2012= 1^2012+1^2012=1+1=2

6 tháng 12 2017

Câu 1:

Theo bài ra ta có:

\(a^{12}+b^{12}=a^{12}+a^{11}b-a^{11}b-ab^{11}+ab^{11}+b^{12}\)

\(=a^{11}\left(a+b\right)-ab\left(a^{10}+b^{10}\right)+b^{11}\left(a+b\right)\)

\(=\left(a+b\right)\left(a^{11}+b^{11}\right)-ab\left(a^{10}+b^{10}\right)\)

\(=\left(a+b\right)\left(a^{12}+b^{12}\right)-ab\left(a^{12}+b^{12}\right)\)(gt cho rồi nhé)

\(=\left(a^{12}+b^{12}\right)\left(a+b-ab\right)\)

\(\Rightarrow a+b-ab=1\)

\(\Leftrightarrow a+b-ab-1=0\)

\(\Leftrightarrow a\left(1-b\right)-\left(1-b\right)=0\)

\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\)

\(\)\(\Leftrightarrow\left[{}\begin{matrix}b=1\\a=1\end{matrix}\right.\)

=> a^20 + b^20 = 2

:)) đừng ném đá nhá

7 tháng 12 2017

Giải đúng quá nhỉ?bn giỏi toán quá hihi

8 tháng 3 2016

Các bước biển đổi:

\(a^{12}+b^{12}=a^{12}+a^{11}.b+a.b^{11}+b^{12}-a^{11}.b-a.b^{11}\)

                    \(=a^{11}\left(a+b\right)+b^{11}\left(a+b\right)-ab\left(a^{10}+b^{10}\right)\)

\(a^{12}+b^{12}=\left(a+b\right)\left(a^{11}+b^{11}\right)-ab\left(a^{10}+b^{10}\right)\)  \(\left(1\right)\)

Vì  \(a^{10}+b^{10}=a^{11}+b^{11}=a^{12}+b^{12}\)  (theo giả thiết)

nên từ  \(\left(1\right)\)  \(\Rightarrow\)  \(a^{12}+b^{12}=\left(a+b\right)\left(a^{12}+b^{12}\right)-ab\left(a^{12}+b^{12}\right)\)

                    \(\Leftrightarrow\)   \(a^{12}+b^{12}=\left(a^{12}+b^{12}\right)\left(a+b-ab\right)\)

                    \(\Leftrightarrow\)   \(a+b-ab=1\)

                    \(\Leftrightarrow\)   \(a-ab+b-1=0\)

                    \(\Leftrightarrow\)   \(a\left(1-b\right)-\left(1-b\right)=0\)

                    \(\Leftrightarrow\)   \(\left(1-b\right)\left(a-1\right)=0\)

                    \(\Leftrightarrow\)   \(1-b=0\)  hoặc  \(a-1=0\)

                    \(\Leftrightarrow\)   \(a=1\)  hoặc  \(b=1\)

\(\text{*)}\)  Nếu  \(a=1\)  thì  \(b^{10}=b^{11}=b^{12}\)  và  \(b>0\)  nên  \(b=1\)

\(\text{*)}\)  Tương tự với trường hợp  \(b=1\)  thì  \(a^{10}=a^{11}=a^{12}\)  và  \(a>0\)  nên ta cũng được  \(a=1\)

Do đó,  \(a=b=1\)

Vậy,  \(a^{2012}+b^{2012}=1^{2012}+1^{2012}=1+1=2\)

22 tháng 10 2016

Bài 1:

a)\(3x^2+5x+2\)

\(=3\left(x+\frac{5}{6}\right)^2-\frac{1}{12}\ge-\frac{1}{12}\)

Dấu = khi \(x=-\frac{5}{6}\)

b)\(4x^2+y^2-2xy+7x-4y+10\)

tương tự có Min=\(\frac{21}{4}\Leftrightarrow x=-\frac{1}{2};y=\frac{3}{2}\)

22 tháng 10 2016

Câu 2: ở đây Câu hỏi của Phạm Thùy Linh - Toán lớp 8 | Học trực tuyến

12 tháng 4 2017

Bài 4:

Ta có:

\(a^2-2a+b^2+4b+4c^2-4c+6=0\)

\(\Leftrightarrow a^2-2a+1+b^2+4b+4+4c^2-4c+1\)

\(\Leftrightarrow\left(a^2-2b+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\)

Mà \(\hept{\begin{cases}\left(a-1\right)^2\ge0\\\left(b+2\right)^2\ge0\\\left(2c-1\right)^2\ge0\end{cases}}\) 

\(\Rightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\ge0\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b+2\right)^2=0\\\left(2c-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-2\\c=\frac{1}{2}\end{cases}}}\)

Vậy \(\left(a,b,c\right)=\left(1;-2;\frac{1}{2}\right)\)

13 tháng 4 2017

bài này mình biết làm r nè, mấy bài khác cơ =))

18 tháng 5 2016

\(\Leftrightarrow2\left(a^{2010}+b^{2010}+c^{2010}\right)=2\left(a^{1005}b^{1005}+b^{1005}c^{1005}+c^{1005}a^{1005}\right)\)

\(\Leftrightarrow2a^{2010}+2b^{2010}+2c^{2010}-2a^{1005}b^{1005}-2b^{1005}c^{1005}-2c^{1005}a^{1005}=0\)

\(\Leftrightarrow\left(a^{2010}-2a^{1005}b^{1005}+b^{2010}\right)+\left(b^{2010}-2b^{1005}c^{1005}+c^{2010}\right)+\left(c^{2010}-2c^{1005}a^{1005}+a^{2010}\right)=0\)

\(\Leftrightarrow\left(a^{1005}-b^{1005}\right)^2+\left(b^{1005}-c^{1005}\right)^2+\left(c^{1005}-a^{1005}\right)^2=0\)

\(\Rightarrow\left(a^{1005}-b^{1005}\right)^2=0;\left(b^{1005}-c^{1005}\right)^2=0;\left(c^{1005}-a^{1005}\right)^2=0\)

\(\Rightarrow a=b=c\)

\(\Rightarrow\left(a-a\right)^{20}+\left(a-a\right)^{11}+\left(a-a\right)^{2010}=0\)

2 ( a trên 2010 + b trân 2010 + c trên 2010 ) = 2 ( a trên 1005 b trên 1005 + b trên 1005 c trên 1005 + c trên 1005 a trên 1005 )

2a^ ( 2010 ) + 2b^ ( 2010 ) + 2c^ ( 2010 ) - 2a^ ( 1005 ) b^ ( 1005 ) - 2b^ ( 1005 ) c^ ( 1005 ) - 2c^ ( 1005 )a^ ( 1005 ) = O\)

( a^ ( 2010 ) - 2a^ ( 1005 ) b^ ( 1005 ) + b^ ( 2010 ) + ( b^( 2010 ) - 2b^ ( 1005 ) c^ ( 1005 ) + c^ ( 2010 ) + ( c^ ( 2010 ) - 2c^ ( 1005 ) a^ ( 1005 ) + a^ ( 2010 ) = 0\)

( a^ ( 1005 ) ^2 + ( b^ ( 1005 ) - c^ ( 1005 ) ^2 + ( c^ ( 1005 ) - a^ ( 1005 ) - a^ ( 1005 ) ^2 = 0\)

( a^ ( 1005 ) - b^ ( 1005 ) ^ 2= 0 : ( b^ ( 1005 ) - c^ ( 1005 ) ^2 = 0 : ( c^ ( 1005 ) - a^ ( 1005 ) ^2 = 0\)

a = b = c

( a - a ) ^ ( 20 ) + ( a - a ) ^ ( 11 ) + ( a - a ) ^ (2010 = 0\)

Vậy :  ( a -a ) ^ ( 20 ) + ( a - a ) ^ ( 11 ) + ( a + a ) ^ ( 2010 = 0\)