Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(^{a^{12}+b^{12}=a.\left(a^{11}+b^{11}\right)-ab^{11}+b.\left(a^{11}+b^{11}\right)-ba^{11}}\)
\(\Rightarrow a^{12}+b^{12}=a.\left(a^{11}+b^{11}\right)+b.\left(a^{11}+b^{11}\right)-ab.\left(a^{10}+b^{10}\right)\)
Do \(a^{12}+b^{12}=a^{11}+b^{11}=a^{10}+b^{10}\)và các tổng này khác 0 ( do a,b khác 0)
\(\Rightarrow1=a+b-ab\)
=> 1= a+b.(1-a)
=> 1-a= b.(1-a)
=> (1-a) - b.(1-a)=0
=> (1-a).(1-b)=0
=> 1-a=0 hoặc 1-b=0 => a=1 hoặc b=1
Với a=1 thì 1^10+b^10=1^11+b^11=>b^10=b^11. Do b khác 0=> b=1
Với b=1 thì a^10+1^10=a^11+1^11=>a^10=a^11. Do a khác 0=> a=1
=> a=1 và b=1
=> M= a^2012+b^2012= 1^2012+1^2012=1+1=2
Câu 1:
Theo bài ra ta có:
\(a^{12}+b^{12}=a^{12}+a^{11}b-a^{11}b-ab^{11}+ab^{11}+b^{12}\)
\(=a^{11}\left(a+b\right)-ab\left(a^{10}+b^{10}\right)+b^{11}\left(a+b\right)\)
\(=\left(a+b\right)\left(a^{11}+b^{11}\right)-ab\left(a^{10}+b^{10}\right)\)
\(=\left(a+b\right)\left(a^{12}+b^{12}\right)-ab\left(a^{12}+b^{12}\right)\)(gt cho rồi nhé)
\(=\left(a^{12}+b^{12}\right)\left(a+b-ab\right)\)
\(\Rightarrow a+b-ab=1\)
\(\Leftrightarrow a+b-ab-1=0\)
\(\Leftrightarrow a\left(1-b\right)-\left(1-b\right)=0\)
\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\)
\(\)\(\Leftrightarrow\left[{}\begin{matrix}b=1\\a=1\end{matrix}\right.\)
=> a^20 + b^20 = 2
:)) đừng ném đá nhá
Các bước biển đổi:
\(a^{12}+b^{12}=a^{12}+a^{11}.b+a.b^{11}+b^{12}-a^{11}.b-a.b^{11}\)
\(=a^{11}\left(a+b\right)+b^{11}\left(a+b\right)-ab\left(a^{10}+b^{10}\right)\)
\(a^{12}+b^{12}=\left(a+b\right)\left(a^{11}+b^{11}\right)-ab\left(a^{10}+b^{10}\right)\) \(\left(1\right)\)
Vì \(a^{10}+b^{10}=a^{11}+b^{11}=a^{12}+b^{12}\) (theo giả thiết)
nên từ \(\left(1\right)\) \(\Rightarrow\) \(a^{12}+b^{12}=\left(a+b\right)\left(a^{12}+b^{12}\right)-ab\left(a^{12}+b^{12}\right)\)
\(\Leftrightarrow\) \(a^{12}+b^{12}=\left(a^{12}+b^{12}\right)\left(a+b-ab\right)\)
\(\Leftrightarrow\) \(a+b-ab=1\)
\(\Leftrightarrow\) \(a-ab+b-1=0\)
\(\Leftrightarrow\) \(a\left(1-b\right)-\left(1-b\right)=0\)
\(\Leftrightarrow\) \(\left(1-b\right)\left(a-1\right)=0\)
\(\Leftrightarrow\) \(1-b=0\) hoặc \(a-1=0\)
\(\Leftrightarrow\) \(a=1\) hoặc \(b=1\)
\(\text{*)}\) Nếu \(a=1\) thì \(b^{10}=b^{11}=b^{12}\) và \(b>0\) nên \(b=1\)
\(\text{*)}\) Tương tự với trường hợp \(b=1\) thì \(a^{10}=a^{11}=a^{12}\) và \(a>0\) nên ta cũng được \(a=1\)
Do đó, \(a=b=1\)
Vậy, \(a^{2012}+b^{2012}=1^{2012}+1^{2012}=1+1=2\)
Bài 1:
a)\(3x^2+5x+2\)
\(=3\left(x+\frac{5}{6}\right)^2-\frac{1}{12}\ge-\frac{1}{12}\)
Dấu = khi \(x=-\frac{5}{6}\)
b)\(4x^2+y^2-2xy+7x-4y+10\)
tương tự có Min=\(\frac{21}{4}\Leftrightarrow x=-\frac{1}{2};y=\frac{3}{2}\)
Câu 2: ở đây Câu hỏi của Phạm Thùy Linh - Toán lớp 8 | Học trực tuyến
Bài 4:
Ta có:
\(a^2-2a+b^2+4b+4c^2-4c+6=0\)
\(\Leftrightarrow a^2-2a+1+b^2+4b+4+4c^2-4c+1\)
\(\Leftrightarrow\left(a^2-2b+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\)
Mà \(\hept{\begin{cases}\left(a-1\right)^2\ge0\\\left(b+2\right)^2\ge0\\\left(2c-1\right)^2\ge0\end{cases}}\)
\(\Rightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b+2\right)^2=0\\\left(2c-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-2\\c=\frac{1}{2}\end{cases}}}\)
Vậy \(\left(a,b,c\right)=\left(1;-2;\frac{1}{2}\right)\)
\(\Leftrightarrow2\left(a^{2010}+b^{2010}+c^{2010}\right)=2\left(a^{1005}b^{1005}+b^{1005}c^{1005}+c^{1005}a^{1005}\right)\)
\(\Leftrightarrow2a^{2010}+2b^{2010}+2c^{2010}-2a^{1005}b^{1005}-2b^{1005}c^{1005}-2c^{1005}a^{1005}=0\)
\(\Leftrightarrow\left(a^{2010}-2a^{1005}b^{1005}+b^{2010}\right)+\left(b^{2010}-2b^{1005}c^{1005}+c^{2010}\right)+\left(c^{2010}-2c^{1005}a^{1005}+a^{2010}\right)=0\)
\(\Leftrightarrow\left(a^{1005}-b^{1005}\right)^2+\left(b^{1005}-c^{1005}\right)^2+\left(c^{1005}-a^{1005}\right)^2=0\)
\(\Rightarrow\left(a^{1005}-b^{1005}\right)^2=0;\left(b^{1005}-c^{1005}\right)^2=0;\left(c^{1005}-a^{1005}\right)^2=0\)
\(\Rightarrow a=b=c\)
\(\Rightarrow\left(a-a\right)^{20}+\left(a-a\right)^{11}+\left(a-a\right)^{2010}=0\)
2 ( a trên 2010 + b trân 2010 + c trên 2010 ) = 2 ( a trên 1005 b trên 1005 + b trên 1005 c trên 1005 + c trên 1005 a trên 1005 )
2a^ ( 2010 ) + 2b^ ( 2010 ) + 2c^ ( 2010 ) - 2a^ ( 1005 ) b^ ( 1005 ) - 2b^ ( 1005 ) c^ ( 1005 ) - 2c^ ( 1005 )a^ ( 1005 ) = O\)
( a^ ( 2010 ) - 2a^ ( 1005 ) b^ ( 1005 ) + b^ ( 2010 ) + ( b^( 2010 ) - 2b^ ( 1005 ) c^ ( 1005 ) + c^ ( 2010 ) + ( c^ ( 2010 ) - 2c^ ( 1005 ) a^ ( 1005 ) + a^ ( 2010 ) = 0\)
( a^ ( 1005 ) ^2 + ( b^ ( 1005 ) - c^ ( 1005 ) ^2 + ( c^ ( 1005 ) - a^ ( 1005 ) - a^ ( 1005 ) ^2 = 0\)
( a^ ( 1005 ) - b^ ( 1005 ) ^ 2= 0 : ( b^ ( 1005 ) - c^ ( 1005 ) ^2 = 0 : ( c^ ( 1005 ) - a^ ( 1005 ) ^2 = 0\)
a = b = c
( a - a ) ^ ( 20 ) + ( a - a ) ^ ( 11 ) + ( a - a ) ^ (2010 = 0\)
Vậy : ( a -a ) ^ ( 20 ) + ( a - a ) ^ ( 11 ) + ( a + a ) ^ ( 2010 = 0\)
Có \(a^{12}+b^{12}=a^{12}+a^{11}b-a^{11}b+ab^{11}-ab^{11}+b^{12}\)
\(=a^{11}\left(a+b\right)+b^{11}\left(a+b\right)-a^{11}b-ab^{11}\)
\(=\left(a^{11}+b^{11}\right)\left(a+b\right)-ab\left(a^{10}+b^{10}\right)\)
\(=\left(a^{12}+b^{12}\right)\left(a+b\right)-ab\left(a^{12}+b^{12}\right)\)(vì giả thiết cho \(a^{10}+b^{10}=a^{11}+b^{11}=a^{12}+b^{12}\))
\(=\left(a^{12}+b^{12}\right)\left(a+b-ab\right)\)
Đã chứng minh \(a^{12}+b^{12}=\left(a^{12}+b^{12}\right)\left(a+b-ab\right)\)suy ra:
\(a+b-ab=1\)
=> \(a+b-ab-1=0\)
=> \(a-1-b\left(a-1\right)=0\)
=> \(\left(a-1\right)\left(1-b\right)=0\)
=> \(a=1\)hoặc \(b=1\)
Nếu \(a=1\)thì từ giả thiết suy ra
\(b^{10}+1=b^{11}+1\)
=> \(b^{10}=b^{11}\)suy ra \(b^{10}\left(b-1\right)=b^{11}-b^{10}=0\)
Mà đề cho b dương =>\(b=1\)=>\(P=a^{20}+b^{20}=2\)
Nếu \(b=1\)thì từ giả thiết suy ra
\(a^{10}+1=a^{11}+1\)
=> \(a^{10}=a^{11}\)suy ra \(a^{10}\left(a-1\right)=a^{11}-a^{10}=0\)
Mà đề cho a dương =>\(a=1\)=>\(P=a^{20}+b^{20}=2\)