Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)
Cần cách khác thì nhắn cái
a)ta có:
\(f\left(x\right):\left(x+1\right)\: dư\: 6\Rightarrow f\left(x\right)-6⋮\left(x+1\right)\\ hay\: 1-a+b-6=0\\ \Leftrightarrow b-a-5=0\Leftrightarrow b-a=5\left(1\right)\)
tương tự: \(2^2+2a+b-3=0\\ 2a+b=-1\left(2\right)\)
từ (1) và(2) => \(\left\{{}\begin{matrix}b-a=5\\2a+b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)
Câu a :
Theo đề bài ta có hệ phương trình :
\(\left\{{}\begin{matrix}f\left(-1\right)=1-a+b=6\\f\left(2\right)=4+2a+b=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\2a+b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)
Vậy đa thức \(f\left(x\right)=x^2-2x+3\)
Lời giải:
Vì $f(x)$ chia $x-3$ dư $2$, $f(x)$ chia $x+4$ dư $9$ nên $f(3)=2; f(-4)=9$
Giả sử $f(x)$ chia $x^2+x-12$ được đa thức dư là $ax+b$
Khi đó: $f(x)=(x^2+x-12)(x^2+3)+ax+b$
$f(3)=(3^2+3-12)(3^2+3)+3a+b$
$\Leftrightarrow 2=3a+b(1)$
$f(-4)=[(-4)^2-4-12][(-4)^2+3)]-4a+b$
$\Leftrightarrow 9=-4a+b(2)$
Từ $(1);(2)\Rightarrow a=-1; b=5$
$f(x)=(x^2+x-12)(x^2+3)-x+5=x^4+x^3-9x^2+2x-31$
Áp dụng định lý Bezout ta có:
\(f\left(x\right)\)chia hết cho \(2x-1\Rightarrow f\left(x\right)=\left(2x-1\right)q\left(x\right)\)
\(\Rightarrow f\left(\frac{1}{2}\right)=0\left(1\right)\)
\(f\left(x\right)\)chia cho \(x-2\)dư 6\(\Rightarrow f\left(x\right)=\left(x-2\right)q\left(x\right)+6\)
\(\Rightarrow f\left(2\right)=6\left(2\right)\)
Vì \(f\left(x\right)\)chia cho \(2x^2-5x+2\)được thương là \(x+2\)và còn dư nên
\(f\left(x\right)=\left(2x^2-5x+2\right)\left(x+2\right)+ax+b\)
\(=\left(2x^2-4x-x+2\right)\left(x+2\right)+ax+b\)
\(=\left[2x\left(x-2\right)-\left(x-2\right)\right]\left(x+2\right)+ax+b\)
\(=\left(x-2\right)\left(2x-1\right)\left(x+2\right)+ax+b\)Kết hợp với (1) và (2) ta được:
\(\hept{\begin{cases}\frac{1}{2}a+b=0\\2a+b=6\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=4\\b=-2\end{cases}}\)
Vạy \(f\left(x\right)=\left(2x^2-5x+2\right)\left(x+2\right)+4x-2\)
Mong các bạn giúp mình, trong lúc hỏi mình sẽ luôn suy nghĩ chứ ko hoàn toàn dựa vào các bạn đâu, nếu bời ạn nào ra đáp án vui lòng ghi cả lời giải giúp mình
xin lỗi các bạn B2 là chia cho x2+2x dư -3x+2 nhé