K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2017

Ta có: \(\frac{x}{x^2+x+1}=\frac{-2}{3}\)

\(\Leftrightarrow\frac{x^2+x+1}{x}=-1,5\)

\(\Leftrightarrow x+1+\frac{1}{x}=-1,5\)

\(\Leftrightarrow x+\frac{1}{x}=-2,5\)

Ta lại có: \(A=\frac{x^2}{x^4+x^2+1}\)

\(\Leftrightarrow\frac{1}{A}=\frac{x^4+x^2+1}{x^2}=x^2+1+\frac{1}{x^2}\)

\(=\left(x+\frac{1}{x}\right)^2-1=\left(-2,5\right)^2-1=5,25\)

11 tháng 7 2019

ai nhanh cho right lun

\(A=\frac{x^2}{x^2-1}-\frac{2x^2}{x^4-1}-\frac{1}{x^2+1}\)ĐK \(x\ne1\)

\(=\frac{x^2}{x^2-1}-\frac{2x^2}{\left(x^2-1\right)\left(x^2+1\right)}-\frac{1}{x^2+1}\)

\(=\frac{x^2\left(x^2+1\right)-2x^2-1\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)

\(=\frac{x^4+x^2-2x^2-x^2+1}{\left(x^2-1\right)\left(x^2+1\right)}\)

\(=\frac{x^4-2x^2+1}{\left(x^2-1\right)\left(x^2+1\right)}\)

\(=\frac{x^4-x^2-x^2+1}{\left(x^2-1\right)\left(x^2+1\right)}\)

\(=\frac{x^2\left(x^2-1\right)-\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)

\(=\frac{\left(x^2-1\right)\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)

\(=\frac{x^2-1}{x^2+1}\)

Thay \(x=-\frac{2}{3}\)ta có 

\(\frac{\left(\frac{-2}{3}\right)^2-1}{\left(-\frac{2}{3}\right)^2+1}=\frac{\frac{4}{9}-1}{\frac{4}{9}+1}=-\frac{5}{9}:\frac{13}{9}=-\frac{5}{13}\)

11 tháng 2 2018

\(\left(\frac{1}{x+1}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3}{x^2-x+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)

\(\left(\frac{x^2-x+1}{x^3+1}-\frac{3}{x^3+1}+\frac{3\left(x+1\right)}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)

\(\left(\frac{x^2-x+1-3+3x+3}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)

tới đây bạn biến đổi tiếp, gõ = cái này lâu quá, gõ mathtype nhanh hơn

11 tháng 2 2018

cảm ơn cậu giúp mk câu c với ạ

17 tháng 3 2019

\(\frac{1}{3}x^3\) nha mik vt nhầm

10 tháng 2 2018

a, Xét : 196 = 14^2 = (a^2+b^2+c^2) = a^4+b^4+c^4+2.(a^2b^2+b^2c^2+c^2a^2) 

<=> a^4+b^4+c^4 = 196 - 2.(a^2b^2+b^2c^2+c^2a^2)

Xét : 0 = (a+b+c)^2 = a^2+b^2+c^2+2.(ab+bc+ca)

Mà a^2+b^2+c^2 = 14

<=> 2.(ab+bc+ca) = -14

<=> ab+bc+ca = -7

<=> a^2b^2+b^2c^2+c^2a^2+2abc.(a+b+c) = 49

Lại có : a+b+c = 0

<=> a^2b^2+b^2c^2+c^2a^2 = 49

<=> A = a^4+b^4+c^4 = 196 - 2.49 = 98

Tk mk nha

10 tháng 2 2018

b)                \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

\(\Leftrightarrow\)\(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}+\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}+\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}=0\)

\(\Leftrightarrow\)\(x^2\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}\right)+y^2\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}\right)+z^2\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}\right)=0\)

\(\Leftrightarrow\)\(x^2=y^2=z^2=0\)

\(\Leftrightarrow\)\(x=y=z=0\)

Vậy   \(D=0\)

21 tháng 12 2016

điều kiện xác định của phân thức là x khác 0 và x khác -3

nên bạn nhập phân thức vào máy rồi thay x =3 ta có P =1/6

21 tháng 12 2016

Mai Thành Đạt làm sai rồi không đọc kĩ đề à