\(\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right):\frac{x^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2019

a) Để giá trị phân thức dc xác định thì x2 -1 # 0 <=> x2 # 1 <=> x # 1 và x # -1 ( giải thích: vì muốn phân thức xác định thì mẫu thức phải khác 0)

(mình ko biết ghi dấu "khác" trong toán, nên ghi đỡ dấu thăng nha, sr bạn)

b) Ta có: x2 + 2x +1 / x2 -1 

       = (x + 1)2 / (x+1).(x-1)

       = (x+1).(x+1) / (x+1).(x-1)

       = x+1 / x-1

Vậy phân thức rút gọn của phân thức đã cho là x+1/ x-1

9 tháng 6 2019

de \(\frac{x^2+2x+1}{x^2-1}\)được xác định => x2-1 khác 0 => x khác +-1

\(\frac{x^2+2x+1}{x^2-1}=\frac{\left(x+1\right)^2}{\left(x+1\right).\left(x-1\right)}=\frac{x+1}{x-1}\)

8 tháng 12 2020

Để phân thức A được xác định thì x khác -2 x khác 3 

8 tháng 12 2020

Mk có tâm rút gọn hộ bạn luôn rồi nè =)) 

a, ĐK : \(x\ne-2;3\)

b, \(A=\frac{8-x}{\left(x+2\right)\left(x-3\right)}+\frac{2}{x+2}\)

\(=\frac{8-x}{\left(x+2\right)\left(x-3\right)}+\frac{2\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}=\frac{8-x+2x-6}{\left(x+2\right)\left(x-3\right)}\)

\(=\frac{x-2}{\left(x-2\right)\left(x-3\right)}=\frac{1}{x-3}\)

NV
5 tháng 6 2019

\(M=\left(\frac{\left(x^2-1\right)\left(x^2+1\right)-\left(x^4-x^2+1\right)}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\right)\left(x^4-\frac{\left(x^2-1\right)\left(x^2+1\right)}{x^2+1}\right)\)

\(=\left(\frac{x^4-1-x^4+x^2-1}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\right)\left(x^4-x^2+1\right)\)

\(=\frac{x^2-2}{x^2+1}\)

b/ \(M=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)

Do \(x^2+1\ge1\Rightarrow\frac{3}{x^2+1}\le3\Rightarrow1-\frac{3}{x^2+1}\ge1-3=-2\)

\(\Rightarrow M_{min}=-2\) khi \(x=0\)