Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
điều kiện xác định của phân thức là x khác 0 và x khác -3
nên bạn nhập phân thức vào máy rồi thay x =3 ta có P =1/6
\(x^2-9x+1=0\Rightarrow x^2+1=9x\)
\(A=\frac{x^4+x^2+1}{5x^2}=\frac{x^4+2x^2+1-x^2}{5x^2}=\frac{\left(x^2+1\right)^2-x^2}{5x^2}=\frac{\left(x^2-x+1\right)\left(x^2+x+1\right)}{5x^2}\)
\(=\frac{\left(9x-x\right)\left(9x+x\right)}{5x^2}=\frac{80x^2}{5x^2}=16\left(x\ne0\right)\)
a. \(=x^3+2^3+1^3-x^3\)
\(=\left(x^3-x^3\right)+8+1\)
\(=0+8+1\)
\(=9\)
Bài 1 :
a) ( x + 2 )( x2 - 2x + 4 ) + (1 - x)(1+x+ + x2 )
= ( x3 - 8 ) + ( 1 - x3 )
= x3 - 8 + 1 - x3
= 7
b) 7x( 4x - 2) - ( x - 3)( x+1 ) + 16x
= 28x2 - 14x - x2 - x + 3x + 3 + 16x
= 27x2 + 3
\(A=\frac{x^2}{x^2-1}-\frac{2x^2}{x^4-1}-\frac{1}{x^2+1}\)ĐK \(x\ne1\)
\(=\frac{x^2}{x^2-1}-\frac{2x^2}{\left(x^2-1\right)\left(x^2+1\right)}-\frac{1}{x^2+1}\)
\(=\frac{x^2\left(x^2+1\right)-2x^2-1\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\frac{x^4+x^2-2x^2-x^2+1}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\frac{x^4-2x^2+1}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\frac{x^4-x^2-x^2+1}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\frac{x^2\left(x^2-1\right)-\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\frac{\left(x^2-1\right)\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\frac{x^2-1}{x^2+1}\)
Thay \(x=-\frac{2}{3}\)ta có
\(\frac{\left(\frac{-2}{3}\right)^2-1}{\left(-\frac{2}{3}\right)^2+1}=\frac{\frac{4}{9}-1}{\frac{4}{9}+1}=-\frac{5}{9}:\frac{13}{9}=-\frac{5}{13}\)
a)Ta có:a2=(x+1/x)2=x2+2+1/x2
=>A=x2+1/x2=a2-2
b)Ta có:a(a2-2)=(x+1/x)(x2+1/x2)=x3+1/x3+x+1/x
=>B=x3+1/x3=a(a2-2)-x-1/x=a(a2-2)-a=a(a2-3)
c)Ta có:(a2-2).a(a2-3)-a=(x2+1/x2)(x3+1/x3)-x-1/x=x5+1/x5+x+1/x-x-1/x=x5+1/x5=C
a)x^2+1/x^2=x^2+2+1/x^2-2=(x+1/x)^2-2=a^2-2
b) (x+1/x)^3-3x-3/x=a^3-3(x+1/x)=a^3-3a
c) minh dang nghi