\(x+\frac{1}{x}=a\) Tính giá trị biểu thức theo a

A = 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2015

a)Ta có:a2=(x+1/x)2=x2+2+1/x2

=>A=x2+1/x2=a2-2

b)Ta có:a(a2-2)=(x+1/x)(x2+1/x2)=x3+1/x3+x+1/x

=>B=x3+1/x3=a(a2-2)-x-1/x=a(a2-2)-a=a(a2-3)

c)Ta có:(a2-2).a(a2-3)-a=(x2+1/x2)(x3+1/x3)-x-1/x=x5+1/x5+x+1/x-x-1/x=x5+1/x5=C

2 tháng 1 2018

a)x^2+1/x^2=x^2+2+1/x^2-2=(x+1/x)^2-2=a^2-2

b) (x+1/x)^3-3x-3/x=a^3-3(x+1/x)=a^3-3a

c) minh dang nghi

8 tháng 8 2015

tớ làm đc 4 câu còn câu E tớ ko bít làm

21 tháng 12 2016

điều kiện xác định của phân thức là x khác 0 và x khác -3

nên bạn nhập phân thức vào máy rồi thay x =3 ta có P =1/6

21 tháng 12 2016

Mai Thành Đạt làm sai rồi không đọc kĩ đề à

15 tháng 11 2018

\(x^2-9x+1=0\Rightarrow x^2+1=9x\)

\(A=\frac{x^4+x^2+1}{5x^2}=\frac{x^4+2x^2+1-x^2}{5x^2}=\frac{\left(x^2+1\right)^2-x^2}{5x^2}=\frac{\left(x^2-x+1\right)\left(x^2+x+1\right)}{5x^2}\)

\(=\frac{\left(9x-x\right)\left(9x+x\right)}{5x^2}=\frac{80x^2}{5x^2}=16\left(x\ne0\right)\)

Bài 1:Tínha) \(\left(x+2\right)\left(x^2-2x+4\right)+\left(1-x\right)\left(1+x+x^2\right)\)b) \(7x\left(4x-2\right)-\left(x-3\right)\left(x+1\right)+16x\)c) \(A=\frac{x^2-6xy+9y^2}{x^2-9y^2}\)d) \(B=\frac{8}{x^2+4x}+\frac{5}{x+4}-\frac{2}{x}\)Bài 2:Phân tích đa thức thành nhân tửa) \(x^2-3x-15\)b) \(x^2-9x+4\)c) \(x^2-12x+32\)d) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)e) \(x^4-2x^3-3x^2-4x-1\)f) \(x^3+x^2-x+2\)Bài 3: Cho x,y là các số thực...
Đọc tiếp

Bài 1:Tính

a) \(\left(x+2\right)\left(x^2-2x+4\right)+\left(1-x\right)\left(1+x+x^2\right)\)

b) \(7x\left(4x-2\right)-\left(x-3\right)\left(x+1\right)+16x\)

c) \(A=\frac{x^2-6xy+9y^2}{x^2-9y^2}\)

d) \(B=\frac{8}{x^2+4x}+\frac{5}{x+4}-\frac{2}{x}\)

Bài 2:Phân tích đa thức thành nhân tử

a) \(x^2-3x-15\)

b) \(x^2-9x+4\)

c) \(x^2-12x+32\)

d) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

e) \(x^4-2x^3-3x^2-4x-1\)

f) \(x^3+x^2-x+2\)

Bài 3: Cho x,y là các số thực sao cho \(x+y\);\(x^2+y^2\);\(x^4+y^4\)là các số nguyên.CMR: \(2x^2y^2\)và \(x^3+y^3\)là các số nguyên

Bài 4: Rút gọn phân thức:

a) \(\frac{x^3+y^3+z^3\cdot3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

b) \(\frac{x^4-2x^2+1}{x^3-3x-2}\)

Bài 5:Cho \(abc=1\)

Tính giá trị của biểu thức \(M=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

Đề thi bắt đầu đến 11 h kế thúc có 1 giải 1 và 2 giải 2 thui nha cố lên nào giải 3 vô hạn nhưng trên 5 điểm

 

11
14 tháng 9 2019

a. \(=x^3+2^3+1^3-x^3\)

\(=\left(x^3-x^3\right)+8+1\)

\(=0+8+1\)

\(=9\)

14 tháng 9 2019

Bài 1 :

a) ( x + 2 )( x2 - 2x + 4 ) + (1 - x)(1+x+ + x2 )

= ( x3 - 8 ) + ( 1 - x3 )

= x3 - 8 + 1 - x3

= 7

b) 7x( 4x - 2) - ( x - 3)( x+1 ) + 16x

= 28x2 - 14x - x2 - x + 3x + 3 + 16x

= 27x2  + 3

11 tháng 7 2019

ai nhanh cho right lun

\(A=\frac{x^2}{x^2-1}-\frac{2x^2}{x^4-1}-\frac{1}{x^2+1}\)ĐK \(x\ne1\)

\(=\frac{x^2}{x^2-1}-\frac{2x^2}{\left(x^2-1\right)\left(x^2+1\right)}-\frac{1}{x^2+1}\)

\(=\frac{x^2\left(x^2+1\right)-2x^2-1\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)

\(=\frac{x^4+x^2-2x^2-x^2+1}{\left(x^2-1\right)\left(x^2+1\right)}\)

\(=\frac{x^4-2x^2+1}{\left(x^2-1\right)\left(x^2+1\right)}\)

\(=\frac{x^4-x^2-x^2+1}{\left(x^2-1\right)\left(x^2+1\right)}\)

\(=\frac{x^2\left(x^2-1\right)-\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)

\(=\frac{\left(x^2-1\right)\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)

\(=\frac{x^2-1}{x^2+1}\)

Thay \(x=-\frac{2}{3}\)ta có 

\(\frac{\left(\frac{-2}{3}\right)^2-1}{\left(-\frac{2}{3}\right)^2+1}=\frac{\frac{4}{9}-1}{\frac{4}{9}+1}=-\frac{5}{9}:\frac{13}{9}=-\frac{5}{13}\)