K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2021

Bn vẽ hình ở đâu v

e) Ta có: \(x^3-4x-14x\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)-14x\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2-14\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=12\end{matrix}\right.\)

5 tháng 8 2021

e)x3-4x+14x(x-2)=0

⇔ x(x2-4)+14x(x-2)=0

⇔ x(x-2)(x+2)+14x(x-2)=0

⇔ (x-2)(x2+2x+14x)=0

⇔ x(x-2)(x+16)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-2=0\\x+16=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\\x=-16\end{matrix}\right.\)

g)x2(x+1)-x(x+1)+x(x-1)=0

⇔ (x+1)(x2-x)+x(x-1)=0

⇔ x(x+1)(x-1)+x(x-1)=0

⇔ x(x-1)(x+2)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=1\\x=-2\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Lời giải:
d.

Áp dụng định lý Menelaus cho tam giác $BDF$ có $A,O,M$ lần lượt thuộc $BD, DF, BF$ và $A,O,M$ thẳng hàng:

$\frac{MF}{MB}.\frac{OD}{OF}.\frac{AB}{AD}=1$

$\Leftrightarrow \frac{MF}{MB}.1.2=1$

$\Leftrightarrow \frac{MF}{MB}=\frac{1}{2}$

$\Rightarrow \frac{BF}{MB}=\frac{3}{2}$

$\Leftrightarrow \frac{BC}{2MB}=\frac{3}{2}$

$\Leftrightarrow BC=3MB$ (đpcm)

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Hình vẽ:

8 tháng 9 2021

có j thắc mắc thì mn cứ hỏi ạ, em cần trc sáng mai nhé!? ><

b: Xét ΔABD và ΔBAC có

BA chung

BD=AC

AD=BC

Do đó: ΔABD=ΔBAC

c: ta có: EA+EC=AC

EB+ED=BD

mà AC=BD

và EA=EB

nên EC=ED

Bài 3: 

2) Ta có: \(B=2x\left(y-z\right)+\left(z-y\right)\left(x+t\right)\)

\(=2x\left(y-z\right)-\left(x+t\right)\left(y-z\right)\)

\(=\left(y-z\right)\left(x-t\right)\)

\(=\left(24-10,6\right)\left(18,3+31,7\right)\)

\(=13,4\cdot50=670\)

3) Ta có: \(C=\left(x-y\right)\left(y+z\right)+y\left(y-x\right)\)

\(=\left(x-y\right)\left(y+z\right)-y\left(x-y\right)\)

\(=z\left(x-y\right)\)

\(=1.5\left(0.86-0.26\right)\)

\(=0,9\)

29 tháng 6 2021

\(5,\Leftrightarrow8\left(x^2-5x+3x-15\right)-\left(8x^2-4x+20x-10\right)=0\)

\(\Leftrightarrow8x^2-40x+24x-120-8x^2+4x-20x+10=0\)

\(\Leftrightarrow-32x-110=0\)

\(\Leftrightarrow x=\dfrac{110}{-32}=-\dfrac{55}{16}\)

\(9,\Leftrightarrow\left(5x-5\right)\left(2x+7-2x-1\right)=x+2-x+5\)

\(\Leftrightarrow6\left(5x-5\right)=7\)

\(\Leftrightarrow5x-5=\dfrac{7}{6}\)

\(\Leftrightarrow x=\dfrac{37}{30}\)

\(8,\Leftrightarrow\left(6x-3\right)\left(x-5-3x+1\right)-3+13=0\)

\(\Leftrightarrow-6\left(2x-1\right)\left(x+2\right)+10=0\)

\(\Leftrightarrow2x^2-x+4x-2=\dfrac{10}{6}\)

\(\Leftrightarrow2x^2+3x-\dfrac{11}{3}=0\)

\(10,\Leftrightarrow8x\left(x^2+x+6x+6\right)-8x^3=5x\)

\(\Leftrightarrow8x^3+8x^2+48x^2+48x-8x^3-5x=0\)

\(\Leftrightarrow56x^2+43x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{43}{56}\end{matrix}\right.\)

Vậy ....

 

29 tháng 6 2021

;-; quên đọc đề may làm trúng 9; 10 câu 6 nốt đây nha

\(6,\Leftrightarrow9x^2-9x-8x^2+40-x^2=5x-3-7x+4\)

\(\Leftrightarrow9x^2-9x-8x^2+40-x^2-5x+3+7x-4=0\)

\(\Leftrightarrow-7x+39=0\)

\(\Leftrightarrow x=\dfrac{39}{7}\)

Vậy ...

13 tháng 9 2017

Hình đa giác TenDaGiac1: DaGiac(B, C, 3) Hình đa giác TenDaGiac1: DaGiac(B, C, 3) Đoạn thẳng f: Đoạn thẳng [B, C] Đoạn thẳng g: Đoạn thẳng [C, A] Đoạn thẳng h: Đoạn thẳng [A, B] Đoạn thẳng i_1: Đoạn thẳng [E, D] Đoạn thẳng j: Đoạn thẳng [D, F] Đoạn thẳng m: Đoạn thẳng [E, G] Đoạn thẳng n: Đoạn thẳng [F, G] Đoạn thẳng p: Đoạn thẳng [D, K] Đoạn thẳng r: Đoạn thẳng [A, G] B = (0.28, 3.28) B = (0.28, 3.28) B = (0.28, 3.28) C = (5.78, 3.32) C = (5.78, 3.32) C = (5.78, 3.32) Điểm A: DaGiac(B, C, 3) Điểm A: DaGiac(B, C, 3) Điểm A: DaGiac(B, C, 3) Điểm D: Điểm trên f Điểm D: Điểm trên f Điểm D: Điểm trên f Điểm E: D đối xứng qua h Điểm E: D đối xứng qua h Điểm E: D đối xứng qua h Điểm F: D đối xứng qua g Điểm F: D đối xứng qua g Điểm F: D đối xứng qua g Điểm G: Giao điểm đường của k, l Điểm G: Giao điểm đường của k, l Điểm G: Giao điểm đường của k, l Điểm K: Giao điểm đường của h, m Điểm K: Giao điểm đường của h, m Điểm K: Giao điểm đường của h, m Điểm I: Giao điểm đường của g, j Điểm I: Giao điểm đường của g, j Điểm I: Giao điểm đường của g, j Điểm J: Giao điểm đường của g, m Điểm J: Giao điểm đường của g, m Điểm J: Giao điểm đường của g, m

a) Do D, E đối xứng qua AB nên tam giác EKD cân tại K.

Do EDFG là hình bình hành nên \(\widehat{KED}=180^o-\widehat{EDF}=180^o-\left(180^o-30^o-30^o\right)=60^o\)

Vậy KDE là tam giác đều.

 b) Câu này phải ta KDFG mới là hình thang cân.

Ta có KDFG đã là hình thang.

Lại có \(\widehat{GFD}=\widehat{KED}\) ( Hai góc đối của hình bình hành)

 và \(\widehat{KED}=\widehat{EKD}\) (tam giác KDE đều)  và \(\widehat{EKD}=\widehat{KDF}\) (so le trong)

Vậy nên \(\widehat{GFD}=\widehat{KDF}\)

Vậy KDFG là hình thang cân (Hai góc kề một đáy bằng nhau)

c) Gọi I, J là giao điểm của DF và KG với AC.

Ta có ngay I là trung điểm DF nên J cũng là trung điểm KG.

Từ đó ta có \(\Delta AJK=\Delta AJG\) (Hai cạnh góc vuông)

\(\Rightarrow\widehat{GAC}=\widehat{KAJ}=60^o=\widehat{ACB}\)

Vậy AG // BC.

13 tháng 9 2017

30o lấy đâu ra vậy

Chỉ mình với :))

\(\left(3x-1\right)^4+2\left(9x^2-6x+1\right)+1\)

\(=\left[\left(3x-1\right)^2+1\right]^2\)

\(=\left(9x^2-6x+2\right)^2\)

18 tháng 9 2021

\(=\left(3x-1\right)^4+2\left(3x-1\right)^2+1\\ =\left[\left(3x-1\right)^2+1\right]^2\\ =\left(9x^2-6x+2\right)^2\)

3 tháng 9 2021

\(c,x\left(x-20\right)-x+20=0\\ \Leftrightarrow x^2-20x-x+20=0\\ \Leftrightarrow x^2-21x+20=0\\ \Leftrightarrow\left(x-20\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=20\\x=1\end{matrix}\right.\)

\(b,x^2-4+\left(x+2\right)\left(x-3\right)=0\\ \Leftrightarrow x^2-4+x^2-x-6=0\\ \Leftrightarrow2x^2-x-10=0\\ \Leftrightarrow\left(2x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-2\end{matrix}\right.\)

a: Ta có: \(x\left(x-20\right)-x+20=0\)

\(\Leftrightarrow\left(x-20\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=20\\x=1\end{matrix}\right.\)

b: Ta có: \(x^2-4+\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{5}{2}\end{matrix}\right.\)