Câu 7.

Hãy chứng minh các hệ thức giao hoán sau đ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2015

a. CM:         [ M^x , M^]  =    ih.M^z  

ta có :

 M^M^y   =    ( - i.h )2.\(\left(y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y}\right)\left(z\frac{\partial}{\partial x}-x\frac{\partial}{\partial z}\right)\)

               =    (  i.h )2.\(\left(y\frac{\partial}{\partial x}-xy\frac{\partial^2}{\partial z^2}\right)\)

M^y.M^x    =    ( - i.h )2.\(\left(z\frac{\partial}{\partial x}-x\frac{\partial}{\partial z}\right)\left(y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y}\right)\)

suy ra :

[ M^x , M^] = M^x M^y  - M^y.M^x  

                 = ( i.h )2.\(\left(y\frac{\partial}{\partial x}-x\frac{\partial}{\partial y}\right)\)

                 = ih.( - i.h)\(\left(x\frac{\partial}{\partial y}-y\frac{\partial}{\partial x}\right)\)

                 =  ih.M^z               (dpcm)

b.CM:    [S^x, S^y] = 0

 ta có :

S^2 =   S^2x  +  S^2y  +   S^2z

        = ( h4/4) \(\left(\begin{matrix}0&1\\1&0\end{matrix}\right)\left(\begin{matrix}0&1\\1&0\end{matrix}\right)\)  + ( h4/4) \(\left(\begin{matrix}0&-i\\1&0\end{matrix}\right)\left(\begin{matrix}0&-i\\1&0\end{matrix}\right)\)  +  ( h4/4)\(\left(\begin{matrix}1&0\\0&-1\end{matrix}\right)\left(\begin{matrix}1&0\\0&-1\end{matrix}\right)\)

         =   (3h/4).\(\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\)

mặt khác :

S^2.S^x  =   (3h2/4)\(\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\)(h/2).\(\left(\begin{matrix}0&1\\1&0\end{matrix}\right)\)

            =    (3h3/8)\(\left(\begin{matrix}0&1\\1&0\end{matrix}\right)\)
 
S^x.S^2  = (h/2).\(\left(\begin{matrix}0&1\\1&0\end{matrix}\right)\) (3h2/4)\(\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\)
            =(3h3/8).\(\left(\begin{matrix}0&1\\1&0\end{matrix}\right)\)
suy ra : [S^x, S^y] =  S^2.S^x    -  S^x.S^2   0

 

17 tháng 1 2015

Ta có :

           [A^ ,B^]= A^ . B - B. A

vậy

 a) Ta có : [A^ ,B^]. ᵠ =( A^ . B^).ᵠ  - (B. A^).ᵠ

                    =   A^.( B^).ᵠ  -  B.( A^.ᵠ)

                    =\(\frac{d}{dx}\)ddx(x . ᵠ) - x . (\(\frac{d}{dx}\)ddx.ᵠ)  

                    = ᵠ +( xdᵠ\dx) - ( xdᵠ\dx)

                     =1.ᵠ                          

               hay  [A^ ,B^]=1

b) Tương tự ta có: [A^ ,B^]. ᵠ =( A^ . B^).ᵠ  - (B. A^).ᵠ

                    =   A^.( B^).ᵠ  -  B.( A^.ᵠ)

                    =\(\frac{d}{dx}\)ddx(x2 . ) - x2(\(\frac{d}{dx}\)ddx.)

                    = 2x ᵠ + x2(d\dx)- x2(d\dx)

                     = 2x ᵠ

                            hay [A^ ,B^]=2x

17 tháng 1 2015

[A^ ,B^]= A^ . B^  - B^ . A^

 a.[A^ ,B^]. ᵠ =( A^ . B^).ᵠ  - (B^ . A^).ᵠ

                    =   A^.( B^).ᵠ  -  B^ .( A^.ᵠ)

                    =\(\frac{d}{dx}\)(x . ᵠ) - x . (\(\frac{d}{dx}\) ᵠ)  

                    = ᵠ +( xdᵠ\dx) - ( xdᵠ\dx)

                     =1.ᵠ                          

                [A^ ,B^]=1

b. .[A^ ,B^]. ᵠ =( A^ . B^).ᵠ  - (B^ . A^).ᵠ

                    =   A^.( B^).ᵠ  -  B^ .( A^.ᵠ)

                    =\(\frac{d}{dx}\)(x2 . ) - x2(\(\frac{d}{dx}\).)

                    = 2x ᵠ + x2(d\dx)- x2(d\dx)

                     = 2x ᵠ

                            [A^ ,B^]=2x

17 tháng 12 2014

Thầy rất hoan nghênh bạn Thịnh đã trả lời câu hỏi 2, nhưng câu này em làm chưa đúng. Ở bài này các em cần phải vận dụng phương trình BET để tính diện tích bề mặt riêng:

Sr = (Vm/22,4).NA.So. Sau khi thay số các em sẽ ra được đáp số.

17 tháng 12 2014

E làm thế này đúng không ạ?

n(N2)=PV/RT=1*129*10^-3/(0.082*273)=5.76*10^-3 (mol)

Độ hấp phụ: S=n(N2)/m=5.76*10^-3/1=5.76*10^-3 (mol/g)

Diện tích bề mặt silicagel: S=N*So*J=6.023*10^23*16.2*10^-20*5.76*10^-3=562(m2/g)

29 tháng 12 2014

Bài này đúng rồi

28 tháng 12 2014

Xem bài làm của các bạn bên dưới, bài này thầy đã chữa. Chịu khó xem các bài làm phía dưới trước khi đặt câu hỏi.

phương trình dạng toán tử :  \(\widehat{H}\)\(\Psi\) = E\(\Psi\)

Toán tử Laplace: \(\bigtriangledown\)2 = \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\)

thay vào từng bài cụ thể ta có :

a.sin(x+y+z)

\(\bigtriangledown\)f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))sin(x+y+z)

                =\(\frac{\partial^2}{\partial x^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial y^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial z^2}\)sin(x+y+z)

                =\(\frac{\partial}{\partial x}\)cos(x+y+z) + \(\frac{\partial}{\partial y}\)cos(x+y+z) + \(\frac{\partial}{\partial z}\)cos(x+y+z)

                = -3.sin(x+y+z)

\(\Rightarrow\) sin(x+y+z) là hàm riêng. với trị riêng bằng -3.

b.cos(xy+yz+zx)

\(\bigtriangledown\)f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))cos(xy+yz+zx)

                =\(\frac{\partial^2}{\partial x^2}\)cos(xy+yz+zx) +\(\frac{\partial^2}{\partial y^2}\)cos(xy+yz+zx) + \(\frac{\partial^2}{\partial z^2}\)cos(xy+yz+zx)

                =\(\frac{\partial}{\partial x}\)(y+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial y}\)(x+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial z}\)(y+x).-sin(xy+yz+zx)

                =- ((y+z)2cos(xy+yz+zx) + (x+z)2cos(xy+yz+zx) + (y+x)2cos(xy+yz+zx))

                =-((y+z)2+ (x+z)2 + (x+z)2).cos(xy+yz+zx)

\(\Rightarrow\) cos(xy+yz+zx) không là hàm riêng của toán tử laplace.

c.exp(x2+y2+z2)

\(\bigtriangledown\)f(x,y,z) = (\(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)\(\frac{\partial^2}{\partial z^2}\))exp(x2+y2+z2)
                =\(\frac{\partial^2}{\partial x^2}\)exp(x2+y2+z2)+\(\frac{\partial^2}{\partial y^2}\)exp(x2+y2+z2) +\(\frac{\partial^2}{\partial z^2}\)exp(x2+y2+z2)
                =\(\frac{\partial}{\partial x}\)2x.exp(x2+y2+z2)+\(\frac{\partial}{\partial y}\)2y.exp(x2+y2+z2)+\(\frac{\partial}{\partial z}\)2z.exp(x2+y2+z2)
                =2.exp(x2+y2+z2) +4x2.exp(x2+y2+z2)+2.exp(x2+y2+z2) +4y2.exp(x2+y2+z2)+2.exp(x2+y2+z2) +4z2.exp(x2+y2+z2)
                =(6+4x2+4y2+4z2).exp(x2+y2+z2)
\(\Rightarrow\)exp(x2+y2+z2không là hàm riêng của hàm laplace.
d.ln(xyz)
\(\bigtriangledown\)f(x,y,z) = (\(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)\(\frac{\partial^2}{\partial z^2}\))ln(xyz)
                =\(\frac{\partial^2}{\partial x^2}\)ln(xyz)+\(\frac{\partial^2}{\partial y^2}\)ln(xyz)+\(\frac{\partial^2}{\partial z^2}\)ln(x+y+z)
                =\(\frac{\partial}{\partial x}\)yz.\(\frac{1}{xyz}\)\(\frac{\partial}{\partial y}\)xz.\(\frac{1}{xyz}\) + \(\frac{\partial}{\partial z}\)xy.\(\frac{1}{xyz}\)
                =\(\frac{\partial}{\partial x}\)\(\frac{1}{x}\) + \(\frac{\partial}{\partial y}\)\(\frac{1}{y}\)+\(\frac{\partial}{\partial z}\)\(\frac{1}{z}\)
                = - \(\frac{1}{x^2}\)\(\frac{1}{y^2}\)\(\frac{1}{z^2}\)
\(\Rightarrow\) ln(xyz) không là hàm riêng của hàm laplace.
 
 
14 tháng 1 2015

đáp án D

13 tháng 1 2015

Ta có hệ thức De_Broglie: λ= h/m.chmc


Đối với vật thể có khối lượng m và vận tốc v ta có: λ= h/m.vhmv

a)     Ta có m=1g=10-3kg và v=1,0 cm/s=10-2m/s

→ λ= 6,625.1034103.102=6,625.10-29 (m)

b)    Ta có m=1g=10-3kg và v =100 km/s=10m

→ λ= 6,625.1034103.105= 6,625.10-36 (m)

c)     Ta có mHe=4,003 = 4,003. 1,66.10-24. 10-3=6,645.10-27 kg  và v= 1000m/s

→ λ= 6,625.10344,03.1000=9.97.10-11 (m)

13 tháng 1 2015

a) áp dụng công thức 

\(\lambda=\frac{h}{mv}=\frac{6,625.10^{-34}}{10^{-3}.10^{-2}}=6,625.10^{-29}\left(m\right)\)

b)

\(\lambda=\frac{6,625.10^{-34}}{10^{-3}.100.10^3}=6,625.10^{-36}\left(m\right)\)

c)

\(\lambda=\frac{6,625.10^{-34}}{4,003.1000}=1,65.10^{-37}\left(m\right)\)

20 tháng 11 2018

Xóa câu hỏi cũ

21 tháng 1 2015

Xác suất tìm thấy vi hạt tính bằng công thức: P(b,c)= \(\int\limits^c_b\)\(\psi\)2dx

Thay ᴪ = sqrt(2/a).sin(ᴫx/a). Giải tích phân ta đươc: 

P(b,c)= \(\frac{c-b}{a}-\frac{1}{2\pi}\left(sin\frac{2\pi c}{a}-sin\frac{2\pi b}{a}\right)\)

a) x = 4,95 ÷ 5,05 nm

P(4.95;5.05)= \(\frac{0,1}{10}-\frac{1}{2\pi}\left(sin\frac{2\pi.5,05}{10}-sin\frac{2\pi.4,95}{10}\right)\)= 0.02

Tương tự với phần b, c ta tính được kết quả:

b) P= 0.0069

c)P=6,6.10-6


 

Ta có:Xác suất tìm thấy vi hạt là:

P(x1;x2)=\(\int\limits^{x_2}_{x_1}\Psi^2d_x\)=\(\int\limits^{x_2}_{x_1}\frac{2}{a}\sin^2\left(\frac{\pi}{a}.x\right)d_x\)=\(\frac{2}{a}.\int\limits^{x_2}_{x_1}\sin^2\left(\frac{\pi}{a}.x\right)d_x\)=\(-\frac{1}{2}.\frac{2}{a}\int\limits^{x_2}_{x_1}\left(1-2\sin^2\left(\frac{\pi}{a}.x\right)-1\right)d_x\)

=\(-\frac{1}{a}\int\limits^{x_2}_{x_1}\cos\left(\frac{2\pi}{a}.x\right)d_x+\frac{1}{a}\int\limits^{x_2}_{x_1}d_x\)=\(\frac{1}{a}\left(x_2-x_1-\frac{a}{2\pi}\left(\sin\left(\frac{2\pi}{a}.x_2\right)-\sin\left(\frac{2\pi}{a}.x_1\right)\right)\right)\)

a)x=4,95\(\div\)5,05nm

Xác suất tìm thấy vi hạt là:

P\(\left(4,95\div5,05\right)\)=\(\frac{1}{10}\left(5,05-4,95-\frac{10}{2\pi}\left(\sin\left(\frac{2\pi}{10}.5,05\right)-\sin\left(\frac{2\pi}{10}.4,95\right)\right)\right)\)=0,019

b)Xác suất tìm thấy vi hạt là:

P(1,95\(\div\)2,05)=\(\frac{1}{10}\left(2,05-1,95-\frac{10}{2\pi}\left(\sin\left(\frac{2\pi}{10}.2,05\right)-\sin\left(\frac{2\pi}{10}.1,95\right)\right)\right)\)=0,0069

c)Xác suất tìm thấy vi hạt là:

P(9,9\(\div\)10)=\(\frac{1}{10}\left(10-9,9-\frac{10}{2\pi}\left(\sin\left(\frac{2\pi}{10}.10\right)-\sin\left(\frac{2\pi}{10}.9,9\right)\right)\right)\)=6,57\(\times10^{-6}\)

27 tháng 8 2015

1 Mol chất có \(6,02.10^{23}\) hạt, nên: 

a) Khối lượng nguyên tử Mg: \(24,31:6,02.10^{23}=\)

b) Thể tích 1 mol nguyên tử: \(24,31:1,738=13,99\) (cm3)

c) Thể tích trung bình của một nguyên tử: \(13,99:6,02.10^{23}=\)

d) Bán kính gần đúng của Mg: \(1,77A^0\)

24 tháng 9 2015

tại sao phần a lại làm như vậy bạn giảu thích kĩ hơn giúp mình đk k