Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. CM: [ M^x , M^y ] = ih.M^z
ta có :
M^x M^y = ( - i.h )2.\(\left(y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y}\right)\left(z\frac{\partial}{\partial x}-x\frac{\partial}{\partial z}\right)\)
= ( i.h )2.\(\left(y\frac{\partial}{\partial x}-xy\frac{\partial^2}{\partial z^2}\right)\)
M^y.M^x = ( - i.h )2.\(\left(z\frac{\partial}{\partial x}-x\frac{\partial}{\partial z}\right)\left(y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y}\right)\)
suy ra :
[ M^x , M^y ] = M^x M^y - M^y.M^x
= ( i.h )2.\(\left(y\frac{\partial}{\partial x}-x\frac{\partial}{\partial y}\right)\)
= ih.( - i.h)\(\left(x\frac{\partial}{\partial y}-y\frac{\partial}{\partial x}\right)\)
= ih.M^z (dpcm)
b.CM: [S^x, S^y] = 0
ta có :
S^2 = S^2x + S^2y + S^2z
= ( h4/4) \(\left(\begin{matrix}0&1\\1&0\end{matrix}\right)\left(\begin{matrix}0&1\\1&0\end{matrix}\right)\) + ( h4/4) \(\left(\begin{matrix}0&-i\\1&0\end{matrix}\right)\left(\begin{matrix}0&-i\\1&0\end{matrix}\right)\) + ( h4/4)\(\left(\begin{matrix}1&0\\0&-1\end{matrix}\right)\left(\begin{matrix}1&0\\0&-1\end{matrix}\right)\)
= (3h/4).\(\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\)
mặt khác :
S^2.S^x = (3h2/4)\(\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\)(h/2).\(\left(\begin{matrix}0&1\\1&0\end{matrix}\right)\)
Xem bài làm của các bạn bên dưới, bài này thầy đã chữa. Chịu khó xem các bài làm phía dưới trước khi đặt câu hỏi.
phương trình dạng toán tử : \(\widehat{H}\)\(\Psi\) = E\(\Psi\)
Toán tử Laplace: \(\bigtriangledown\)2 = \(\frac{\partial^2}{\partial x^2}\)+ \(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\)
thay vào từng bài cụ thể ta có :
a.sin(x+y+z)
\(\bigtriangledown\)2 f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)+ \(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))sin(x+y+z)
=\(\frac{\partial^2}{\partial x^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial y^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial z^2}\)sin(x+y+z)
=\(\frac{\partial}{\partial x}\)cos(x+y+z) + \(\frac{\partial}{\partial y}\)cos(x+y+z) + \(\frac{\partial}{\partial z}\)cos(x+y+z)
= -3.sin(x+y+z)
\(\Rightarrow\) sin(x+y+z) là hàm riêng. với trị riêng bằng -3.
b.cos(xy+yz+zx)
\(\bigtriangledown\)2 f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)+ \(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))cos(xy+yz+zx)
=\(\frac{\partial^2}{\partial x^2}\)cos(xy+yz+zx) +\(\frac{\partial^2}{\partial y^2}\)cos(xy+yz+zx) + \(\frac{\partial^2}{\partial z^2}\)cos(xy+yz+zx)
=\(\frac{\partial}{\partial x}\)(y+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial y}\)(x+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial z}\)(y+x).-sin(xy+yz+zx)
=- ((y+z)2cos(xy+yz+zx) + (x+z)2cos(xy+yz+zx) + (y+x)2cos(xy+yz+zx))
=-((y+z)2+ (x+z)2 + (x+z)2).cos(xy+yz+zx)
\(\Rightarrow\) cos(xy+yz+zx) không là hàm riêng của toán tử laplace.
c.exp(x2+y2+z2)
3Fe+2O2 \(\underrightarrow{t^o}\) Fe3O4 (1)
a) Ta có: Mật độ xác suất tìm thấy electron trong vùng không gian xung quanh hạt nhân nguyên tử:
D(r) = R2(r) . r2
= 416/729 . a0-5 . r2 . (2 - r/3a0)2 . e-2r/3a0 . r2
= 416/729 . a0-5 . (4r4 - 4r5/3a0 + r6/9a02) . e-2r/3a0
Khảo sát hàm số D(r) thuộc r
Xét: d D(r)/ dr = 416/729 . a0-5 . [(16r3 - 20r4/3a0 + 2r5/3a02) . e-2r/3a0 - (4r4 - 4r5/3a0 + r6/9a02) . 2/3a0 . e-2r/3a0 ]
= 416/729 . a0-5 . e-2r/3a0 . r3 . (16a03 - 28r/3a0 + 14r2/9a02 - 2r3/27a03)
= 832/19683 . a0-8 . e-2r/3a0 . r3 . (-r3 +21r2.a0 - 126r.a02 +216a03)
= - 832/19683 . a0-8 . e-2r/3a0 . r3 . (r - 6a0).(r - 3a0).(r - 12a0)
d D(r)/ dr = 0. Suy ra r =0; r =3a0 ; r = 6a0; r = 12a0
Với r = 0 : D(r) =0
r =3a0 : D(r) = 416/9 .a-1 . e-2
r =6a0 : D(r) = 0
r =12a0 : D(r) = 425984/9.a-1 . e-8
b) Ai vẽ câu này rồi cho up lên với, cám ơn mọi người trước nhé!
a)Mật độ xác suất có mặt electron tỷ lệ với |R3P|2.r2
D(r)=|R3P|2.r2 =D (r)=\(\frac{416}{729}\) .a0-5.(2r2- \(\frac{r^3}{3a_0}\)).\(^{e^{-\frac{2r}{3a_0}}}\)
Lấy đạo hàm của D theo r để khảo sát mật độ xác suất :
D' (r)= \(\frac{416}{729}\) .a0-5.2.(2r2-\(\frac{r^3}{3a_0}\)).(4r-\(\frac{r^2}{a_0}\)).\(^{e^{-\frac{2r}{3a_0}}}\)+\(\frac{416}{729}\) .a0-5.(2r2-\(\frac{r^3}{3a_0}\))2.(-\(\frac{2}{3a_0}\)).\(^{e^{-\frac{2r}{3a_0}}}\)
=\(\frac{832}{729}\). a0-6.\(^{e^{-\frac{2r}{3a_0}}}\). (2r2-\(\frac{r^3}{3a_0}\)) .[(4r-\(\frac{r^2}{a_0}\)).a0 -\(\frac{1}{3}\). (2r2-\(\frac{r^3}{3a_0}\))]
=\(\frac{832}{729}\). a0-6.\(^{e^{-\frac{2r}{3a_0}}}\).r3.(2- \(\frac{r}{3a_0}\)).(\(\frac{r^2}{9a_0}-\frac{5r}{3}+4a_0\))
=>D’(r)=0 => r=0 ,r=3a0 ,r=6a0 ,r=12a0.
Với:r=0 =>D(r)=0
r=3a0 =>D(r)=0
r=6a0 =>D(r)=\(\frac{416}{9a_0.e^2}\)
r=12a0=>D(r)=\(\frac{425984}{a_0.e^8}\)
b)
\(n_{SO_2}=0,15mol\)
\(n_{OH^-}=\left(0,2+0,2\right).0,5=0,2mol\)
\(\frac{n_{OH^-}}{n_{SO_2}}=\frac{4}{3}\)
\(\Rightarrow\) muối tạo thành là \(HSO_3^-,SO_3^{2-}\)
BTĐT: \(n\left(HSO_3\right)+2n\left(SO_3^{2-}\right)=0,1+0,1=0,2\)
\(n\left(HSO_3^-\right)+n\left(SO_3\right)=0,15\)
\(\Rightarrow n\left(HSO_3\right)=0,1;n\left(SO_3\right)=0,05\)
\(m=m_{k^+}+m_{Na^+}+m_{HSO_3^-}+m_{SO_3}=0,1\)\(.39+0,1.23+0,1.81+0,05.80=18,3g\)
Ta có :
[A^ ,B^]= A^ . B^ - B^ . A^
vậy
a) Ta có : [A^ ,B^]. ᵠ =( A^ . B^).ᵠ - (B^ . A^).ᵠ
= A^.( B^).ᵠ - B^ .( A^.ᵠ)
=\(\frac{d}{dx}\)ddx(x . ᵠ) - x . (\(\frac{d}{dx}\)ddx.ᵠ)
= ᵠ +( xdᵠ\dx) - ( xdᵠ\dx)
=1.ᵠ
hay [A^ ,B^]=1
b) Tương tự ta có: [A^ ,B^]. ᵠ =( A^ . B^).ᵠ - (B^ . A^).ᵠ
= A^.( B^).ᵠ - B^ .( A^.ᵠ)
=\(\frac{d}{dx}\)ddx(x2 . ᵠ) - x2(\(\frac{d}{dx}\)ddx.ᵠ)
= 2x ᵠ + x2(dᵠ\dx)- x2(dᵠ\dx)
= 2x ᵠ
hay [A^ ,B^]=2x
[A^ ,B^]= A^ . B^ - B^ . A^
a.[A^ ,B^]. ᵠ =( A^ . B^).ᵠ - (B^ . A^).ᵠ
= A^.( B^).ᵠ - B^ .( A^.ᵠ)
=\(\frac{d}{dx}\)(x . ᵠ) - x . (\(\frac{d}{dx}\) ᵠ)
= ᵠ +( xdᵠ\dx) - ( xdᵠ\dx)
=1.ᵠ
[A^ ,B^]=1
b. .[A^ ,B^]. ᵠ =( A^ . B^).ᵠ - (B^ . A^).ᵠ
= A^.( B^).ᵠ - B^ .( A^.ᵠ)
=\(\frac{d}{dx}\)(x2 . ᵠ) - x2(\(\frac{d}{dx}\).ᵠ)
= 2x ᵠ + x2(dᵠ\dx)- x2(dᵠ\dx)
= 2x ᵠ
[A^ ,B^]=2x