Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{-3}{2}-2x+\frac{3}{4}=-1\)
\(\frac{-3}{2}-2x=-1-\frac{3}{4}\)
\(\frac{-3}{2}-2x=\frac{-7}{4}\)
\(2x=\frac{-7}{4}+\frac{-3}{2}\)
\(2x=\frac{-13}{4}\)
\(x=\frac{-13}{4}:2\)
\(x=\frac{-13}{4}.\frac{1}{2}\)
\(x=\frac{-13}{8}\)
Ta có: \(\left(\dfrac{4}{13}\cdot\dfrac{6}{5}+\dfrac{4}{13}\cdot\dfrac{2}{5}\right)\left(2x+1\right)^2=\dfrac{10}{13}\)
\(\Leftrightarrow\dfrac{4}{13}\cdot\left(\dfrac{6}{5}+\dfrac{2}{5}\right)\left(2x+1\right)^2=\dfrac{10}{13}\)
\(\Leftrightarrow\dfrac{4}{13}\cdot\dfrac{8}{5}\cdot\left(2x+1\right)^2=\dfrac{10}{13}\)
\(\Leftrightarrow\dfrac{32}{65}\cdot\left(2x+1\right)^2=\dfrac{10}{13}\)
\(\Leftrightarrow\left(2x+1\right)^2=\dfrac{10}{13}:\dfrac{32}{65}=\dfrac{10}{13}\cdot\dfrac{65}{32}=\dfrac{25}{16}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=\dfrac{5}{4}\\2x+1=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{5}{4}-1=\dfrac{1}{4}\\2x=-\dfrac{5}{4}-1=-\dfrac{9}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}:2=\dfrac{1}{8}\\x=-\dfrac{9}{4}:2=-\dfrac{9}{8}\end{matrix}\right.\)
Vậy: \(x\in\left\{\dfrac{1}{8};-\dfrac{9}{8}\right\}\)
10+(2x-1)2:3 =13
(2x-1)2:3 =13-10
(2x-1)2:3 =3
(2x-1)2=3*3
(2x-1)2=9
(2x-1)2=32
=>2x-1=3
2x=3+1
2x=4
=> x=4:2=2
nhớ phải **** cko mk nha!!!
\(A=\left|2x+1\right|+13\ge13\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
\(B=-\left(3x+5\right)^2+9\le9\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{5}{3}\)
a, Vì |2x+1|≥0 với mọi
⇒A≥13
Dấu = xảy ra ⇔2x+1=0⇔x=\(\dfrac{-1}{2}\)
b, Vì (3x+5)2≥0 với mọi x
⇒B≤9
Dấu = xảy ra ⇔3x+5=1⇔x=\(\dfrac{-5}{3}\)
\(\left|5x+13\right|=2x-7\)
khi \(x>\frac{7}{2}\), biểu thức có dạng:
\(\orbr{\begin{cases}5x+13=2x-7\\5x+13=7-2x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x=-20\\7x=-6\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{20}{3}\\x=-\frac{6}{7}\end{cases}}}\)
\(\left(2x+1\right)^{10}=49^5\)
\(\left(2x+1\right)^{10}=\left(7^2\right)^5\)
\(\left(2x+1\right)^{10}=7^{10}\)
\(\left(2x+1\right)^{10}=7^{10}\) hoặc \(\left(2x+1\right)^{10}=\left(-7\right)^{10}\)
\(2x+1=7\) hoặc \(2x+1=-7\)
*) \(2x+1=7\)
\(2x=6\)
\(x=3\)
*) \(2x+1=-7\)
\(2x=-8\)
\(x=-4\)
Vậy \(x=-4;x=3\)
(2x +1)10 = 495
(2x+1)10 = (72)5
(2x +1)10 = 710
\(\left[{}\begin{matrix}2x+1=7\\2x+1=-7\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=6\\2x=-8\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)