Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0
xét với mọi n thuộc N thì A:2 vì vậy ta cần tìm n để n:3n
xét để A: 3 thì n không có dạng 3k+2 để A:3(k thuộc N)
A=n^2+11n+30
để A:n thì n thuộc ước 30 mà ước thuộc N của 30 là
1,2,3,5,6,10,15,30
trong đó 2,5 có dạng 3k+2 nên ta loại
vậy n là 1,3,6,10,15,30
câu 2:
Giả sử f(x)=ax2+bx+cf(x)=ax2+bx+c (do đề bài cho là đa thức bậc hai)
Suy ra
f(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+bf(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+b
Mà f(x)−f(x−1)=xf(x)−f(x−1)=x
⇒2ax+a+b=x⇒2ax+a+b=x
Do đó a+b=0a+b=0 và a=1/2a=1/2 từ đó ta suy ra a=1/2;b=−1/2a=1/2;b=−1/2
Do đó f(x)=\(\frac{x^2}{2}-\frac{x}{2}+c\)
f(n)=1+2+3+...+nf(n)=1+2+3+...+n
Áp dụng điều ta vừa chứng minh được thì:
f(1)−f(0)=1f(1)−f(0)=1
f(2)−f(1)=2f(2)−f(1)=2
....
f(n)−f(n−1)=nf(n)−f(n−1)=n
Do đó
1+2+...+n=f(1)−f(0)+f(2)−f(1)+...+f(n)−f(n−1)=f(n)−f(0)=\(\frac{n^2}{2}-\frac{n}{2}\)=\(\frac{n\left(n-1\right)}{2}\)
p nguyên tố p>3
=>p có dạng 6m+1 và 6m-1
Thay vào p^2+2012 chứng minh nó là hợp số nữa là xong bạn à.
Nếu thấy bài làm của mình đúng thì tick nha bạn.Cảm ơn bạn nhiều.
Áp dụng ta đc:
\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}=\frac{5a+5b+5c}{a+b+c}=5\left(\text{vì: a,b,c khác 0}\right)\)
\(\Rightarrow\hept{\begin{cases}b+c=2a\\c+a=2b\\a+b=2c\end{cases}}\Rightarrow a=b=c\)
\(\Rightarrow P=6\)
\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}\)
\(\Rightarrow\frac{3a+b+c}{a}-2=\frac{a+3b+c}{b}-2=\frac{a+b+3c}{c}-2\)
\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
Xét \(a+b+c\ne0\)
\(\Rightarrow a=b=c\)
Thay vào P ta được P=6
Xét \(a+b+c=0\)
\(\Rightarrow a+b=-c;b+c=-a;a+c=-b\)
Thay vào P ta được P= -3
Vậy P có 2 gtri là ...........
ta có:(x-1).f(x)=(x+4).f(x+8) với mọi x. (*)
=>(*) đúng với giá trị x=1
Với x=1 thay vào (*) ta được (1-1).f(1)=(1+4).f(1+8)
=> 0.f(1)=5.f(9) =>f(9)=0
=> x=9 là 1 nghiệm của f(x)
Thay f(9)=0 vào (*) ta được
(9-1).f(9)=(9+4).f(9+8) => 8.f(9)=13.f(17)
=>8.0=13.f(17) => 0=13.f(17)
=> f(17)=0
=>17 là 1 nghiệm của f(x)
vậy có ít nhất 1 nghiệm là số nguyên tố
tk mk nha bn
*****Chúc bạn học giỏi*****
Câu 1:
Ta có:
\(\left(2n^2-n+2\right)\div\left(2n+1\right)=n-1+\dfrac{3}{2n+1}\)
Để \(\left(2n^2-n+2\right)⋮\left(2n+1\right)\)
Thì \(3⋮2n+1\) Hay \(2n+1\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{\pm1;\pm3\right\}\)
Vậy \(n=\left\{-2;-1;0;1\right\}\)
Câu 2:
Thay \(x=2013\) vào đẳng thức ta có:
\(\left(2013-2013\right).f\left(2013\right)=\left(2013-2014\right).f\left(2013-2012\right)\)
\(\Rightarrow f\left(1\right)=0\)
\(\Rightarrow x=1\) là một nghiệm của đa thức \(f\left(x\right)\)
Thay \(x=2014\) vào đẳng thức ta có:
\(\left(2014-2013\right).f\left(2014\right)=\left(2014-2014\right).f\left(2014-2012\right)\)
\(\Rightarrow f\left(2014\right)=0\)
\(\Rightarrow x=2014\) là một nghiệm của đa thức \(f\left(x\right)\)
Vậy đa thức \(f\left(x\right)\) có ít nhất 2 nghiệm \(x=1;x=2014\)
Câu 3:
Ta có:
\(5\equiv1\) (\(mod\) \(4\)) \(\Rightarrow5^x\equiv1\) (\(mod\) \(4\))
\(\Rightarrow5^x+1\equiv2\) (\(mod\) \(4\)) \(\Rightarrow y=1\)
Thay vào đẳng thức trên ta có:
\(5^x+1=2\Rightarrow5^x=1\Rightarrow x=0\)
Vậy \(\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
Câu 4: Tìm x:
\(\left(x-2013\right)^{x+1}-\left(x-2013\right)^{x+10}=0\)
Cho mình hỏi thêm câu này nữa :))